Suppr超能文献

慢性阻塞性肺疾病中纤毛细胞的生成改变。

Altered generation of ciliated cells in chronic obstructive pulmonary disease.

机构信息

Université catholique de Louvain (UCL), Institute of Experimental & Clinical Research - Pole of Pneumology, ENT and Dermatology, Avenue Hippocrate 54/B1-54.04, B-1200, Brussels, Belgium.

Department of Pneumology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium.

出版信息

Sci Rep. 2019 Nov 29;9(1):17963. doi: 10.1038/s41598-019-54292-x.

Abstract

In COPD, epithelial changes are prominent features in the airways, such as goblet cell hyperplasia and squamous metaplasia. In contrast, it remains unclear whether ciliated cells are reduced and which pathways dysregulate epithelial differentiation. We hypothesized that bronchial epithelial cell lineage specification is dysregulated in COPD because of an aberrant reprogramming through transforming growth factor (TGF)-β1. Surgical lung tissue from 81 COPD and 61 control (smokers and non-smokers) patients was assessed for bronchial epithelial cell phenotyping by immunohistochemistry, both in situ and in vitro in reconstituted air-liquid interface (ALI) cultures. The role of TGF-β1 was studied in vitro. COPD epithelium in large airways, when compared to controls, showed decreased β-tubulin IV + ciliated cells (4.4%, 2.5-8.8% versus 8.5%, 6.3-11.8% of surface staining, median and IQR, p = 0.0009) and increased MUC5AC + goblet cells (34.8%, 24.4-41.9% versus 10.3%, 5.1-17.6%, p < 0.0001). Both features were recapitulated in the ALI-cultured epithelium from COPD patients. Exogenous TGF-β1 reduced mucociliary differentiation while neutralizing TGF-β1 during ALI increased both specialized cell types. The COPD airway epithelium displays altered differentiation for ciliated cells, which recapitulates in vitro, at least in part through TGF-β1.

摘要

在 COPD 中,气道上皮的变化是显著特征,例如杯状细胞增生和鳞状化生。相比之下,纤毛细胞是否减少以及哪些途径导致上皮分化失调仍不清楚。我们假设 COPD 中的支气管上皮细胞谱系特化是失调的,因为转化生长因子 (TGF)-β1 通过异常重编程导致的。通过免疫组织化学,对来自 81 名 COPD 患者和 61 名对照(吸烟者和非吸烟者)患者的手术肺组织进行支气管上皮细胞表型评估,包括原位和在重建的气液界面 (ALI) 培养物中进行。研究了 TGF-β1 的作用。与对照组相比,COPD 大气道上皮中的 β-微管蛋白 IV+纤毛细胞(4.4%,2.5-8.8%比 8.5%,6.3-11.8%的表面染色,中位数和 IQR,p=0.0009)减少,而 MUC5AC+杯状细胞(34.8%,24.4-41.9%比 10.3%,5.1-17.6%,p<0.0001)增加。这两种特征都在 COPD 患者的 ALI 培养上皮中得到了重现。外源性 TGF-β1 减少了黏液纤毛分化,而在 ALI 期间中和 TGF-β1 则增加了两种特化细胞类型。COPD 气道上皮的纤毛细胞分化发生改变,这至少部分通过 TGF-β1 在体外得到了重现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38d2/6884487/d6ba3069a3fd/41598_2019_54292_Fig1_HTML.jpg

相似文献

1
Altered generation of ciliated cells in chronic obstructive pulmonary disease.
Sci Rep. 2019 Nov 29;9(1):17963. doi: 10.1038/s41598-019-54292-x.
4
Imprinting of the COPD airway epithelium for dedifferentiation and mesenchymal transition.
Eur Respir J. 2015 May;45(5):1258-72. doi: 10.1183/09031936.00135814. Epub 2015 Mar 5.
5
Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease.
EBioMedicine. 2020 Nov;61:103034. doi: 10.1016/j.ebiom.2020.103034. Epub 2020 Oct 10.
7
Smoking cessation and bronchial epithelial remodelling in COPD: a cross-sectional study.
Respir Res. 2007 Nov 26;8(1):85. doi: 10.1186/1465-9921-8-85.
9
FAM13A as potential therapeutic target in modulating TGF-β-induced airway tissue remodeling in COPD.
Am J Physiol Lung Cell Mol Physiol. 2021 Aug 1;321(2):L377-L391. doi: 10.1152/ajplung.00477.2020. Epub 2021 Jun 9.
10
TGF-β Signaling Pathways in Different Compartments of the Lower Airways of Patients With Stable COPD.
Chest. 2018 Apr;153(4):851-862. doi: 10.1016/j.chest.2017.12.017. Epub 2017 Dec 28.

引用本文的文献

2
Therapeutic strategies to reverse cigarette smoke-induced ion channel and mucociliary dysfunction in COPD airway epithelial cells.
Am J Physiol Lung Cell Mol Physiol. 2025 Apr 1;328(4):L571-L585. doi: 10.1152/ajplung.00258.2024. Epub 2025 Mar 17.
3
Development of a Widely Accessible, Advanced Large-Scale Microfluidic Airway-on-Chip.
Bioengineering (Basel). 2025 Feb 13;12(2):182. doi: 10.3390/bioengineering12020182.
4
Physiology and pathophysiology of mucus and mucolytic use in critically ill patients.
Crit Care. 2025 Feb 7;29(1):68. doi: 10.1186/s13054-025-05286-x.
6
Glypican-3 is a key tuner of the Hedgehog pathway in COPD.
Heliyon. 2024 Dec 28;11(1):e41564. doi: 10.1016/j.heliyon.2024.e41564. eCollection 2025 Jan 15.
7
TAp73 regulates mitochondrial dynamics and multiciliated cell homeostasis through an OPA1 axis.
Cell Death Dis. 2024 Nov 8;15(11):807. doi: 10.1038/s41419-024-07130-6.
8
High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.
Sci Rep. 2024 Nov 1;14(1):26248. doi: 10.1038/s41598-024-77665-3.
9
Inflammation-induced loss of CFTR-expressing airway ionocytes in non-eosinophilic asthma.
Respirology. 2025 Jan;30(1):25-40. doi: 10.1111/resp.14833. Epub 2024 Oct 2.
10
A novel tubular model to recapitulate features of distal airways: the bronchioid.
Eur Respir J. 2024 Dec 5;64(6). doi: 10.1183/13993003.00562-2024. Print 2024 Dec.

本文引用的文献

2
Alteration of primary cilia in COPD.
Eur Respir J. 2018 Jul 11;52(1). doi: 10.1183/13993003.00122-2018. Print 2018 Jul.
3
Exhaustion of Airway Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease.
Am J Respir Crit Care Med. 2018 Apr 1;197(7):885-896. doi: 10.1164/rccm.201704-0667OC.
4
Epithelial ciliated beating cells essential for ex vivo ALI culture growth.
BMC Pulm Med. 2017 May 3;17(1):80. doi: 10.1186/s12890-017-0423-5.
5
Motile and non-motile cilia in human pathology: from function to phenotypes.
J Pathol. 2017 Jan;241(2):294-309. doi: 10.1002/path.4843.
7
Digital pathology: elementary, rapid and reliable automated image analysis.
Histopathology. 2016 May;68(6):888-96. doi: 10.1111/his.12867. Epub 2015 Nov 25.
8
Cilia and Diseases.
Bioscience. 2014 Dec 1;64(12):1126-1137. doi: 10.1093/biosci/biu174.
9
Imprinting of the COPD airway epithelium for dedifferentiation and mesenchymal transition.
Eur Respir J. 2015 May;45(5):1258-72. doi: 10.1183/09031936.00135814. Epub 2015 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验