Suppr超能文献

小儿心肌炎诊疗方案:一种早期识别与管理的算法及用于验证的回顾性分析

Pediatric Myocarditis Protocol: An Algorithm for Early Identification and Management with Retrospective Analysis for Validation.

作者信息

Howard Ashley, Hasan Ali, Brownlee John, Mehmood Noormah, Ali Mir, Mehta Shivani, Fergie Jamie

机构信息

Yale School of Medicine, PO Box 208064, New Haven, CT, 60520, USA.

Driscoll Children's Hospital, 3533 South Alameda street, Corpus Christi, TX, 78411, USA.

出版信息

Pediatr Cardiol. 2020 Feb;41(2):316-326. doi: 10.1007/s00246-019-02258-1. Epub 2019 Nov 30.

Abstract

Myocarditis is an inflammatory disease of the myocardium with numerous different etiologies, the vast majority of which are infectious in origin. Patients afflicted with myocarditis can have variable presentations from flu-like symptoms to cardiogenic shock and sudden death, thus making the diagnosis difficult. The purpose of this study is the development of an algorithm for early identification and management of myocarditis based on a review of the published data and available literature. To validate the efficacy of this algorithm, a retrospective chart review of all the patient's presenting symptoms and diagnostic workup, treatment, and clinical progression was performed and applied to the algorithm to investigate whether they could be diagnosed at the time of presentation. Retrospective chart review was performed and all the patient's diagnosed with myocarditis between the years 2009 and 2017 were included in the study. 12 patients were identified on chart review and the algorithm was found to be 100% accurate at identifying all myocarditis patients at presentation by using the symptom identification.

摘要

心肌炎是一种心肌的炎症性疾病,病因众多,其中绝大多数源于感染。患心肌炎的患者临床表现各异,从类似流感的症状到心源性休克和猝死,因此诊断困难。本研究的目的是基于对已发表数据和现有文献的综述,开发一种用于心肌炎早期识别和管理的算法。为验证该算法的有效性,对所有患者的症状表现、诊断检查、治疗及临床进展进行了回顾性病历审查,并将其应用于该算法,以研究患者在就诊时是否能够被诊断出来。进行了回顾性病历审查,2009年至2017年间所有被诊断为心肌炎的患者均纳入研究。通过病历审查确定了12例患者,发现该算法通过症状识别在识别所有就诊时的心肌炎患者方面准确率达100%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验