Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
EBioMedicine. 2018 Oct;36:316-328. doi: 10.1016/j.ebiom.2018.08.036. Epub 2018 Sep 16.
We hypothesized that changes in the mitochondrial DNA (mtDNA) would significantly influence whole body metabolism, adiposity and gene expression in response to diet. Because it is not feasible to directly test these predictions in humans we used Mitochondrial-Nuclear eXchange mice, which have reciprocally exchanged nuclear and mitochondrial genomes between different Mus musculus strains. Results demonstrate that nuclear-mitochondrial genetic background combination significantly alters metabolic efficiency and body composition. Comparative RNA sequencing analysis in adipose tissues also showed a clear influence of the mtDNA on regulating nuclear gene expression on the same nuclear background (up to a 10-fold change in the number of differentially expressed genes), revealing that neither Mendelian nor mitochondrial genetics unilaterally control gene expression. Additional analyses indicate that nuclear-mitochondrial genome combination modulates gene expression in a manner heretofore not described. These findings provide a new framework for understanding complex genetic disease susceptibility.
我们假设线粒体 DNA(mtDNA)的变化将显著影响全身代谢、肥胖和基因表达对饮食的反应。由于直接在人体中检验这些预测是不可行的,我们使用了线粒体-核交换(Mitochondrial-Nuclear eXchange)小鼠,这些小鼠在不同的 Mus musculus 品系之间进行了核和线粒体基因组的相互交换。结果表明,核-线粒体遗传背景组合显著改变了代谢效率和身体成分。脂肪组织的比较 RNA 测序分析也表明,mtDNA 对调节同一核背景下的核基因表达有明显影响(差异表达基因的数量增加了 10 倍),这表明孟德尔遗传和线粒体遗传都不能单方面控制基因表达。进一步的分析表明,核-线粒体基因组组合以迄今尚未描述的方式调节基因表达。这些发现为理解复杂的遗传疾病易感性提供了一个新的框架。