Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA.
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 20;375(1790):20190174. doi: 10.1098/rstb.2019.0174. Epub 2019 Dec 2.
Mitochondrial genomes can sustain mutations that are simultaneously detrimental to individual fitness and yet, can proliferate within individuals owing to a replicative advantage. We analysed the fitness effects and population dynamics of a mitochondrial genome containing a novel 499 bp deletion in the () gene (Δ) encoding the cytochrome of complex III in Δ reached a high heteroplasmic frequency of 96% in one experimental line during a mutation accumulation experiment and was linked to additional spontaneous mutations in and . The Δ mutant mitotype imposed a significant fitness cost including a 65% and 52% reduction in productivity and competitive fitness, respectively, relative to individuals bearing wild-type (WT) mitochondria. Deletion-bearing worms were rapidly purged within a few generations when competed against WT mitochondrial DNA (mtDNA) bearing worms in experimental populations. By contrast, the Δ mitotype was able to persist in large populations comprising heteroplasmic individuals only, although the average intracellular frequency of Δ exhibited a slow decline owing to competition among individuals bearing different frequencies of the heteroplasmy. Within experimental lines subjected to severe population bottlenecks ( = 1), the relative intracellular frequency of Δ increased, which is a hallmark of selfish drive. A positive correlation between Δ and WT mtDNA copy-number suggests a mechanism that increases total mtDNA , and does not discern the Δ mitotype from the WT mtDNA. This study demonstrates the selfish nature of the Δ mitotype, given its transmission advantage and substantial fitness load for the host, and highlights the importance of population size for the population dynamics of selfish mtDNA. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
线粒体基因组可以承受同时对个体适应性有害的突变,但由于复制优势,这些突变可以在个体内部增殖。我们分析了一个线粒体基因组的适应性效应和种群动态,该基因组在编码细胞色素的 ()基因中包含一个新的 499 bp 缺失 (Δ) 编码复合物 III的 ( )。在一个突变积累实验中,Δ 在一个实验品系中达到了 96%的高异质体频率,并与 和 中的额外自发突变相关。Δ 突变体线粒体类型对个体产生了显著的适应性成本,包括生产力和竞争适应性分别降低了 65%和 52%,相对于携带野生型 (WT) 线粒体的个体。在实验种群中,当与携带 WT 线粒体 DNA (mtDNA) 的个体竞争时,携带缺失的蠕虫在几代内迅速被清除。相比之下,Δ 表型能够在仅包含异质体个体的大群体中持续存在,尽管由于个体之间不同异质体频率的竞争,Δ 的平均细胞内频率缓慢下降。在经历严重种群瓶颈 ( = 1) 的实验品系中,Δ 的相对细胞内频率增加,这是自私驱动的标志。Δ 与 WT mtDNA 拷贝数之间存在正相关关系,表明了一种增加总 mtDNA 的机制,并且不能将 Δ 表型与 WT mtDNA 区分开来。本研究表明,Δ 表型具有自私性,因为它具有传递优势和对宿主的巨大适应性负担,并强调了种群大小对自私 mtDNA 种群动态的重要性。本文是主题为“将线粒体基因型与表型联系起来:一项复杂的努力”的一部分。