Suppr超能文献

内心的冲突:自发出现的自私线粒体基因组的起源、增殖和持续存在。

The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome.

机构信息

Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Jan 20;375(1790):20190174. doi: 10.1098/rstb.2019.0174. Epub 2019 Dec 2.

Abstract

Mitochondrial genomes can sustain mutations that are simultaneously detrimental to individual fitness and yet, can proliferate within individuals owing to a replicative advantage. We analysed the fitness effects and population dynamics of a mitochondrial genome containing a novel 499 bp deletion in the () gene (Δ) encoding the cytochrome of complex III in Δ reached a high heteroplasmic frequency of 96% in one experimental line during a mutation accumulation experiment and was linked to additional spontaneous mutations in and . The Δ mutant mitotype imposed a significant fitness cost including a 65% and 52% reduction in productivity and competitive fitness, respectively, relative to individuals bearing wild-type (WT) mitochondria. Deletion-bearing worms were rapidly purged within a few generations when competed against WT mitochondrial DNA (mtDNA) bearing worms in experimental populations. By contrast, the Δ mitotype was able to persist in large populations comprising heteroplasmic individuals only, although the average intracellular frequency of Δ exhibited a slow decline owing to competition among individuals bearing different frequencies of the heteroplasmy. Within experimental lines subjected to severe population bottlenecks ( = 1), the relative intracellular frequency of Δ increased, which is a hallmark of selfish drive. A positive correlation between Δ and WT mtDNA copy-number suggests a mechanism that increases total mtDNA , and does not discern the Δ mitotype from the WT mtDNA. This study demonstrates the selfish nature of the Δ mitotype, given its transmission advantage and substantial fitness load for the host, and highlights the importance of population size for the population dynamics of selfish mtDNA. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.

摘要

线粒体基因组可以承受同时对个体适应性有害的突变,但由于复制优势,这些突变可以在个体内部增殖。我们分析了一个线粒体基因组的适应性效应和种群动态,该基因组在编码细胞色素的 ()基因中包含一个新的 499 bp 缺失 (Δ) 编码复合物 III的 ( )。在一个突变积累实验中,Δ 在一个实验品系中达到了 96%的高异质体频率,并与 和 中的额外自发突变相关。Δ 突变体线粒体类型对个体产生了显著的适应性成本,包括生产力和竞争适应性分别降低了 65%和 52%,相对于携带野生型 (WT) 线粒体的个体。在实验种群中,当与携带 WT 线粒体 DNA (mtDNA) 的个体竞争时,携带缺失的蠕虫在几代内迅速被清除。相比之下,Δ 表型能够在仅包含异质体个体的大群体中持续存在,尽管由于个体之间不同异质体频率的竞争,Δ 的平均细胞内频率缓慢下降。在经历严重种群瓶颈 ( = 1) 的实验品系中,Δ 的相对细胞内频率增加,这是自私驱动的标志。Δ 与 WT mtDNA 拷贝数之间存在正相关关系,表明了一种增加总 mtDNA 的机制,并且不能将 Δ 表型与 WT mtDNA 区分开来。本研究表明,Δ 表型具有自私性,因为它具有传递优势和对宿主的巨大适应性负担,并强调了种群大小对自私 mtDNA 种群动态的重要性。本文是主题为“将线粒体基因型与表型联系起来:一项复杂的努力”的一部分。

相似文献

1
The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome.
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 20;375(1790):20190174. doi: 10.1098/rstb.2019.0174. Epub 2019 Dec 2.
3
Dissecting the sequential evolution of a selfish mitochondrial genome in Caenorhabditis elegans.
Heredity (Edinb). 2024 Sep;133(3):186-197. doi: 10.1038/s41437-024-00704-2. Epub 2024 Jul 5.
6
Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in C. elegans.
Cell Metab. 2016 Jul 12;24(1):91-103. doi: 10.1016/j.cmet.2016.06.008.
8
Complex Transmission Patterns and Age-Related Dynamics of a Selfish mtDNA Deletion.
Integr Comp Biol. 2019 Oct 1;59(4):983-993. doi: 10.1093/icb/icz128.

引用本文的文献

2
Applying multilevel selection to understand cancer evolution and progression.
PLoS Biol. 2025 Jul 18;23(7):e3003290. doi: 10.1371/journal.pbio.3003290. eCollection 2025 Jul.
3
Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes.
Biogerontology. 2024 Dec 27;26(1):33. doi: 10.1007/s10522-024-10175-x.
5
Dissecting the sequential evolution of a selfish mitochondrial genome in Caenorhabditis elegans.
Heredity (Edinb). 2024 Sep;133(3):186-197. doi: 10.1038/s41437-024-00704-2. Epub 2024 Jul 5.
8
Evolutionary codependency: insights into the mitonuclear interaction landscape from experimental and wild Caenorhabditis nematodes.
Curr Opin Genet Dev. 2023 Aug;81:102081. doi: 10.1016/j.gde.2023.102081. Epub 2023 Jul 6.
10
Mitonuclear Mismatch is Associated With Increased Male Frequency, Outcrossing, and Male Sperm Size in Experimentally-Evolved .
Front Genet. 2022 Mar 11;13:742272. doi: 10.3389/fgene.2022.742272. eCollection 2022.

本文引用的文献

1
Intracellular quality control of mitochondrial DNA: evidence and limitations.
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 20;375(1790):20190176. doi: 10.1098/rstb.2019.0176. Epub 2019 Dec 2.
2
Genetic Incompatibilities Between Mitochondria and Nuclear Genes: Effect on Gene Flow and Speciation.
Front Genet. 2019 Feb 13;10:62. doi: 10.3389/fgene.2019.00062. eCollection 2019.
3
Clonal expansion of mitochondrial DNA deletions is a private mechanism of aging in long-lived animals.
Aging Cell. 2018 Oct;17(5):e12814. doi: 10.1111/acel.12814. Epub 2018 Jul 24.
5
Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link?
EBioMedicine. 2017 Jul;21:7-13. doi: 10.1016/j.ebiom.2017.03.020. Epub 2017 Mar 14.
6
Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.
J Cell Sci. 2017 Apr 1;130(7):1274-1284. doi: 10.1242/jcs.197269. Epub 2017 Feb 13.
8
Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in C. elegans.
Cell Metab. 2016 Jul 12;24(1):91-103. doi: 10.1016/j.cmet.2016.06.008.
9
Powering senescence: The ugly side of mitochondria.
Cell Cycle. 2016 Oct;15(19):2541-2542. doi: 10.1080/15384101.2016.1204852. Epub 2016 Jul 11.
10
Selfish drive can trump function when animal mitochondrial genomes compete.
Nat Genet. 2016 Jul;48(7):798-802. doi: 10.1038/ng.3587. Epub 2016 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验