Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 20;375(1790):20190181. doi: 10.1098/rstb.2019.0181. Epub 2019 Dec 2.
Mitochondria provide the vast majority of cellular energy available to eukaryotes. Therefore, adjustments in mitochondrial function through genetic changes in mitochondrial or nuclear-encoded genes might underlie environmental adaptation. Environmentally induced plasticity in mitochondrial function is also common, especially in response to thermal acclimation in aquatic systems. Here, we examined mitochondrial function in mayfly larvae ( and spp.) from high and low elevation mountain streams during thermal acclimation to ecologically relevant temperatures. A multi-substrate titration protocol was used to evaluate different respiratory states in isolated mitochondria, along with cytochrome oxidase and citrate synthase activities. In general, maximal mitochondrial respiratory capacity and oxidative phosphorylation coupling efficiency decreased during acclimation to higher temperatures, suggesting montane insects may be especially vulnerable to rapid climate change. Consistent with predictions of the climate variability hypothesis, mitochondria from collected at a low elevation site with highly variable daily and seasonal temperatures exhibited greater thermal tolerance than from a high elevation site with comparatively stable temperatures. However, mitochondrial phenotypes were more resilient than whole-organism phenotypes in the face of thermal stress. These results highlight the complex relationships between mitochondrial and organismal genotypes, phenotypes and environmental adaptation. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
线粒体为真核生物提供了绝大多数可用的细胞能量。因此,通过线粒体或核编码基因的遗传变化来调整线粒体功能可能是环境适应的基础。线粒体功能的环境诱导可塑性也很常见,特别是在水生系统对热驯化的反应中。在这里,我们研究了高山溪流的蜉蝣幼虫( 和 spp.)在适应生态相关温度时的线粒体功能。使用多底物滴定方案来评估分离的线粒体中的不同呼吸状态,以及细胞色素氧化酶和柠檬酸合酶的活性。一般来说,在适应较高温度的过程中,最大的线粒体呼吸能力和氧化磷酸化偶联效率降低,这表明山区昆虫可能特别容易受到快速气候变化的影响。与气候变异性假说的预测一致,与来自温度相对稳定的高海拔地点的 相比,来自每日和季节性温度变化较大的低海拔地点的 线粒体表现出更高的耐热性。然而,在面对热应激时,线粒体表型比整个生物体表型更有弹性。这些结果突出了线粒体和生物体基因型、表型和环境适应之间的复杂关系。本文是主题问题“将线粒体基因型与表型联系起来:一项复杂的努力”的一部分。