Suppr超能文献

檀香 PIN:. 的异源蛋白互作组

TulsiPIN: An Interologous Protein Interactome of .

机构信息

Centre for Computational Biology and Bioinformatics , Central University of Himahcal Pradesh , Dharamshala 176206 , India.

出版信息

J Proteome Res. 2020 Feb 7;19(2):884-899. doi: 10.1021/acs.jproteome.9b00683. Epub 2020 Jan 6.

Abstract

, commonly known as holy basil or tulsi, is globally recognized for its multitude of medicinal properties. However, a comprehensive study revealing the complex interplay among its constituent proteins at subcellular level is still lacking. To bridge this gap, in this work, a genome-scale interologous protein-protein interaction (PPI) network, TulsiPIN, is developed using 36 template plants, which consists of 13 660 nodes and 327 409 binary interactions. A high confidence network, hc-TulsiPIN, consisting of 7719 nodes having 95 532 interactions is inferred using domain-domain interaction information along with interolog-based statistics, and its reliability is assessed using pathway enrichment, functional homogeneity, and protein colocalization of PPIs. Examination of topological features revealed that hc-TulsiPIN possesses conventional properties, like small-world, scale-free, and modular architecture. A total of 1625 vital proteins are predicted by statistically evaluating hc-TulsiPIN with two ensembles of corresponding random networks, each consisting of 10 000 realizations of Erdoős-Rényi and Barabási-Albert models. Also, numerous regulatory proteins like transcription factors, transcription regulators, and protein kinases are profiled. Using 36 guide genes participating in 9 secondary metabolite biosynthetic pathways, a subnetwork consisting of 171 proteins and 612 interactions was constructed, and 127 of these proteins could be successfully characterized. Detailed information of TulsiPIN is available at https://cuhpcbbtulsipin.shinyapps.io/tulsipin_v0/ .

摘要

, 通常被称为圣罗勒或土尔西,因其众多的药用特性而在全球范围内得到认可。然而,对于其亚细胞水平组成蛋白之间复杂相互作用的综合研究仍然缺乏。为了弥补这一空白,在这项工作中,使用 36 个模板植物开发了一个基因组规模的同源蛋白-蛋白相互作用(PPI)网络 TulsiPIN,该网络由 13660 个节点和 327409 个二项相互作用组成。使用基于域-域相互作用信息和同源性统计的方法推断出一个高置信度网络 hc-TulsiPIN,该网络由 7719 个节点和 95532 个相互作用组成,其可靠性通过途径富集、功能同质性和 PPI 的蛋白质共定位来评估。拓扑特征的研究表明,hc-TulsiPIN 具有传统的特性,如小世界、无标度和模块化结构。通过用两套相应的随机网络(每个网络由 10000 个 Erdoős-Rényi 和 Barabási-Albert 模型的实现组成)对 hc-TulsiPIN 进行统计评估,预测了总共 1625 个重要蛋白质。此外,还分析了大量的调节蛋白,如转录因子、转录调节剂和蛋白激酶。使用参与 9 种次生代谢物生物合成途径的 36 个指导基因,构建了一个由 171 个蛋白质和 612 个相互作用组成的子网,其中 127 个蛋白质可以成功表征。TulsiPIN 的详细信息可在 https://cuhpcbbtulsipin.shinyapps.io/tulsipin_v0/ 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验