Suppr超能文献

构建 TiCT MXene 纳米片之间的导电桥阵列,用于高性能锂离子电池和高效析氢。

Constructing Conductive Bridge Arrays between TiCT MXene Nanosheets for High-Performance Lithium-Ion Batteries and Highly Efficient Hydrogen Evolution.

机构信息

Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , PR China.

Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China.

出版信息

Inorg Chem. 2019 Dec 16;58(24):16524-16536. doi: 10.1021/acs.inorgchem.9b02513. Epub 2019 Dec 2.

Abstract

TiCT is a member of the MXene family with high potential for electrochemical applications, including lithium-ion batteries (LIBs) and hydrogen evolution reaction (HER). However, severe interlayer restacking not only causes a great loss of the active sites but also decreases the ionic diffusion channels, both of which significantly degrades the electrochemical performances of LIBs and HER. The common interlayer spacers could increase interlayer space but reduce the conductivity. Herein, we introduce carbon nanotube (CNT) arrays between TiCT MXene nanosheets (3D CNTs@TiCT) as the conductive bridges for achieving a unique architecture with high conductivity, fast ion/mass transfer channels, and high exposure of the activity sites. In this architecture, 1D CNTs can not only be viewed as the interlayer spacer that prevents TiCT MXene nanosheets from recombining but also connect with the neighbor TiCT MXene nanosheets providing more ion/electron transport channels. Benefiting from this unique structure that could improve ion/electron transfer kinetics and capacitive contribution, 3D CNTs@TiCT displays high specific capacity as an anode for LIBs (491 mA h g at 320 mA g). Furthermore, 3D CNTs@TiCT also exhibits excellent HER performance in alkaline medium (the overpotential is 93 mV at 10 mA cm) and excellent water splitting performance. This strategy that construction of CNT arrays between the MXene nanosheets proves an effective method for the rational design of multifunctional energy storage/conversion materials.

摘要

TiCT 是 MXene 家族的一员,具有电化学应用的巨大潜力,包括锂离子电池(LIBs)和析氢反应(HER)。然而,严重的层间堆积不仅会导致大量活性位点的损失,还会减少离子扩散通道,这两者都会显著降低 LIBs 和 HER 的电化学性能。常见的层间间隔物可以增加层间距,但会降低电导率。在这里,我们在 TiCT MXene 纳米片之间引入了碳纳米管(CNT)阵列(3D CNTs@TiCT)作为导电桥,以实现具有高导电性、快速离子/质量转移通道和高活性位点暴露的独特结构。在这种结构中,1D CNT 不仅可以作为防止 TiCT MXene 纳米片重新组合的层间间隔物,还可以与相邻的 TiCT MXene 纳米片连接,提供更多的离子/电子传输通道。得益于这种独特的结构,可以改善离子/电子转移动力学和电容贡献,3D CNTs@TiCT 作为 LIBs 的阳极表现出高比容量(在 320 mA g 下为 491 mA h g)。此外,3D CNTs@TiCT 在碱性介质中也表现出优异的 HER 性能(在 10 mA cm 时过电位为 93 mV)和出色的水分解性能。这种在 MXene 纳米片之间构建 CNT 阵列的策略证明了一种用于合理设计多功能储能/转换材料的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验