Xu Xinyue, Jiang Qingqing, Yang Chenyu, Ruan Jinxi, Zhao Weifang, Wang Houyu, Lu Xinxin, Li Zhe, Chen Yuanzhen, Zhang Chaofeng, Hu Juncheng, Zhou Tengfei
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University Wuhan 430074 China
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
Chem Sci. 2024 Jan 19;15(9):3262-3272. doi: 10.1039/d3sc06079a. eCollection 2024 Feb 28.
The precisely engineered structures of materials greatly influence the manifestation of their properties. For example, in the process of alkali metal ion storage, a carefully designed structure capable of accommodating inserted and extracted ions will improve the stability of material cycling. The present study explores the uniform distribution of self-grown carbon nanotubes to provide structural support for the conductive and elastic MXene layers of TiCT-Co@NCNTs. Furthermore, a compatible electrolyte system has been optimized by analyzing the solvation structure and carefully regulating the component in the solid electrolyte interphase (SEI) layer. Mechanistic studies demonstrate that the decomposition predominantly controlled by FSI leads to the formation of a robust inorganic SEI layer enriched with KF, thus effectively inhibiting irreversible side reactions and major structural deterioration. Confirming our expectations, TiCT-Co@NCNTs exhibits an impressive reversible capacity of 260 mA h g, even after 2000 cycles at 500 mA g in 1 M KFSI (DME), surpassing most MXene-based anodes reported for PIBs. Additionally, density functional theory (DFT) calculations verify the superior electronic conductivity and lower K diffusion energy barriers of the novel superstructure of TiCT-Co@NCNTs, thereby affirming the improved electrochemical kinetics. This study presents systematic evaluation methodologies for future research on MXene-based anodes in PIBs.
材料精确设计的结构极大地影响其性能的表现。例如,在碱金属离子存储过程中,精心设计的能够容纳插入和脱出离子的结构将提高材料循环的稳定性。本研究探索了自生长碳纳米管的均匀分布,为TiCT-Co@NCNTs的导电和弹性MXene层提供结构支撑。此外,通过分析溶剂化结构并仔细调节固体电解质界面(SEI)层中的成分,优化了一种兼容的电解质体系。机理研究表明,主要由FSI控制的分解导致形成富含KF的坚固无机SEI层,从而有效抑制不可逆副反应和主要结构劣化。正如我们所期望的,即使在1 M KFSI(DME)中以500 mA g的电流密度循环2000次后,TiCT-Co@NCNTs仍表现出令人印象深刻的260 mA h g的可逆容量,超过了大多数报道的基于MXene的PIBs负极。此外,密度泛函理论(DFT)计算验证了TiCT-Co@NCNTs新型超结构具有优异的电子导电性和更低的K扩散能垒,从而证实了电化学动力学的改善。本研究为未来基于MXene的PIBs负极研究提供了系统的评估方法。