Yang Rongliang, Hu Qingmei, Yang Shaodian, Zeng Zhiping, Zhang Hao, Cao Anyuan, Gui Xuchun
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
ACS Appl Mater Interfaces. 2022 Sep 21;14(37):41997-42006. doi: 10.1021/acsami.2c10659. Epub 2022 Sep 7.
Two-dimensional (2D) MXene nanosheets are attractive for electrochemical energy storage applications due to their superior surface-controlled charge storage capacity. However, the slow ion transport in the closely packed electrode limits their electrochemical performances. Meanwhile, the restricted surface-controlled pseudocapacitance of MXene nanosheets requires to be enhanced. Herein, a well-controlled electrophoretic deposition strategy is developed to disperse TiCT nanosheets into a freestanding, porous carbon nanotube (CNT) sponge. The constructed TiCT@CNT hybrid sponge can provide high-speed ion-transport pathways for the charge-discharge process. Furthermore, by tuning the deposition potential, the inserted MXene nanosheets can be partially oxidized, boosting the pseudocapacitance performance. A large gravimetric capacitance of 468 F g at 10 mV s and a retention of 79.8% at 100 mV s can be achieved in the TiCT@CNT electrode. Meanwhile, the highest areal capacitance of 661 mF cm at 1 mA cm was obtained in the sample with high-loading TiCT. For the assembled symmetric supercapacitor, 92.8% of the capacitance is retained after 10 000 cycles of the charge-discharge process at 10 mA cm. Thus, this study develops a promising electrophoretic deposition strategy for dispersing 2D MXene nanosheets and boosting their pseudocapacitive performance, resulting in a high-capacitive electrochemical energy storage electrode.
二维(2D)MXene纳米片因其卓越的表面控制电荷存储能力而在电化学储能应用中颇具吸引力。然而,紧密堆积电极中缓慢的离子传输限制了它们的电化学性能。同时,MXene纳米片受限的表面控制赝电容需要增强。在此,开发了一种可控的电泳沉积策略,将TiCT纳米片分散到独立的多孔碳纳米管(CNT)海绵中。构建的TiCT@CNT混合海绵可为充放电过程提供高速离子传输途径。此外,通过调节沉积电位,插入的MXene纳米片可部分氧化,提高赝电容性能。在TiCT@CNT电极中,在10 mV s时可实现468 F g的大比电容,在100 mV s时保持率为79.8%。同时,在高负载TiCT的样品中,在1 mA cm时获得了661 mF cm的最高面积电容。对于组装的对称超级电容器,在10 mA cm下进行10000次充放电循环后,电容保留率为92.8%。因此,本研究开发了一种有前景的电泳沉积策略,用于分散二维MXene纳米片并提高其赝电容性能,从而得到高电容的电化学储能电极。