Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
J Bacteriol. 2020 Feb 11;202(5). doi: 10.1128/JB.00625-19.
Bacterial lipopolysaccharides are major components and contributors to the integrity of Gram-negative outer membranes. The more conserved lipid A-core part of this complex glycolipid is synthesized separately from the hypervariable O-antigenic polysaccharide (OPS) part, and they are joined in the periplasm prior to translocation to the outer membrane. Three different biosynthesis strategies are recognized for OPS biosynthesis, and one, the synthase-dependent pathway, is currently confined to a single example: the O:54 antigen from serovar Borreze. Synthases are complex enzymes that have the capacity to both polymerize and export bacterial polysaccharides. Although synthases like cellulose synthase are widespread, they typically polymerize a glycan without employing a lipid-linked intermediate, unlike the O:54 synthase (WbbF), which produces an undecaprenol diphosphate-linked product. This raises questions about the overall similarity between WbbF and conventional synthases. In this study, we examine the topology of WbbF, revealing four membrane-spanning helices, compared to the eight in cellulose synthase. Molecular modeling of the glycosyltransferase domain of WbbF indicates a similar architecture, and site-directed mutagenesis confirmed that residues important for catalysis and processivity in cellulose synthase are conserved in WbbF and required for its activity. These findings indicate that the glycosyltransferase mechanism of WbbF and classic synthases are likely conserved despite the use of a lipid acceptor for chain extension by WbbF. Glycosyltransferases play a critical role in the synthesis of a wide variety of bacterial polysaccharides. These include O-antigenic polysaccharides, which form the distal component of lipopolysaccharides and provide a protective barrier important for survival and host-pathogen interactions. Synthases are a subset of glycosyltransferases capable of coupled synthesis and export of glycans. Currently, the O:54 antigen of serovar Borreze involves the only example of an O-polysaccharide synthase, and its generation of a lipid-linked product differentiates it from classical synthases. Here, we explore features conserved in the O:54 enzyme and classical synthases to shed light on the structure and function of the unusual O:54 enzyme.
细菌脂多糖是革兰氏阴性外膜完整性的主要组成部分和贡献者。这种复合糖脂的更保守的脂质 A-核心部分与超变的 O-抗原多糖(OPS)部分分开合成,并且在易位到外膜之前在周质中连接。OPS 生物合成有三种不同的生物合成策略,其中一种,依赖于合成酶的途径,目前仅限于一个例子: 血清型 Borreze 的 O:54 抗原。合成酶是具有聚合和输出细菌多糖能力的复杂酶。虽然像纤维素合成酶这样的合成酶很普遍,但它们通常在不使用脂连接中间体的情况下聚合聚糖,与产生十一异戊烯焦磷酸连接产物的 O:54 合成酶(WbbF)不同。这就提出了关于 WbbF 与传统合成酶之间总体相似性的问题。在这项研究中,我们检查了 WbbF 的拓扑结构,发现了四个跨膜螺旋,而纤维素合成酶有八个。WbbF 的糖基转移酶结构域的分子建模表明了类似的结构,并且定点诱变证实了纤维素合成酶中对催化和连续性很重要的残基在 WbbF 中保守,并且是其活性所必需的。这些发现表明,尽管 WbbF 使用脂质受体进行链延伸,但 WbbF 和经典合成酶的糖基转移酶机制可能是保守的。糖基转移酶在各种细菌多糖的合成中起着至关重要的作用。这些包括 O-抗原多糖,它们形成脂多糖的远端成分,并提供对生存和宿主-病原体相互作用很重要的保护屏障。合成酶是能够进行聚糖偶联合成和输出的糖基转移酶的一个子集。目前, 血清型 Borreze 的 O:54 抗原涉及唯一的 O-多糖合成酶的例子,并且它产生的脂连接产物将其与经典合成酶区分开来。在这里,我们探索了 O:54 酶和经典合成酶中保守的特征,以阐明不寻常的 O:54 酶的结构和功能。