Suppr超能文献

主要组织相容性复合体 II 类限制的、CD4 T 细胞依赖和非依赖机制是疫苗诱导对 保护性免疫所必需的。

Major Histocompatibility Complex Class II-Restricted, CD4 T Cell-Dependent and -Independent Mechanisms Are Required for Vaccine-Induced Protective Immunity against .

机构信息

Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA.

Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.

出版信息

Infect Immun. 2020 Feb 20;88(3). doi: 10.1128/IAI.00824-19.

Abstract

To understand the role of major histocompatibility complex class I (MHC-I) and MHC-II in vaccine-mediated protection against , we evaluated the protective efficacy of a formalin-inactivated Nine Mile phase I vaccine (PIV) in β-microglobulin-deficient (B2m KO) and MHC-II-deficient (MHC-II KO) mice. Vaccination reduced disease severity in wild-type (WT) and B2m KO mice but failed to reduce bacterial burden in MHC-II KO mice. This suggests that the MHC-II antigen presentation pathway is required for PIV-mediated protection against infection. MHC-I and MHC-II affect antibody isotype switching, since both PIV-vaccinated B2m KO and MHC-II KO mice produced less -specific IgG than PIV-vaccinated WT mice. Interestingly, MHC-II and CD4 deficiencies were not equivalent in terms of splenomegaly and bacterial clearance. This demonstrates a partial role for CD4 T cells while revealing MHC-II-restricted, CD4-independent mechanisms. Adoptive transfer of CD4 T cells from PIV-vaccinated WT mice to naive CD4-deficient (CD4 KO) mice demonstrated that antigen-experienced CD4 T cells are sufficient to generate protection. Conversely, transfer of naive CD4 T cells to PIV-vaccinated CD4 KO mice exacerbates disease. Using Tbet-deficient (Tbet KO) mice, we showed a partial role for Th1 subset CD4 T cells in vaccine protection. Furthermore, Th1-independent roles for Tbet were suggested by significant differences in disease between PIV-vaccinated Tbet KO and CD4 KO mice. Interferon gamma was shown to contribute to the host inflammatory response but not bacterial clearance. Collectively, these findings suggest that vaccine-induced protective immunity against a murine model of experimental Q fever requires MHC-II-restricted, CD4 T cell-dependent and -independent mechanisms that can be exploited for a new-generation human Q fever vaccine.

摘要

为了了解主要组织相容性复合体 I 类 (MHC-I) 和 MHC-II 在疫苗介导的对 保护中的作用,我们评估了福尔马林灭活的 9 英里 I 期疫苗 (PIV) 在β-微球蛋白缺陷 (B2m KO) 和 MHC-II 缺陷 (MHC-II KO) 小鼠中的保护效力。疫苗接种可减轻野生型 (WT) 和 B2m KO 小鼠的疾病严重程度,但不能减轻 MHC-II KO 小鼠的细菌负荷。这表明 MHC-II 抗原呈递途径是 PIV 介导的对 感染保护所必需的。MHC-I 和 MHC-II 影响抗体同种型转换,因为 PIV 疫苗接种的 B2m KO 和 MHC-II KO 小鼠产生的针对 的 IgG 特异性比 PIV 疫苗接种的 WT 小鼠少。有趣的是,MHC-II 和 CD4 缺陷在脾肿大和细菌清除方面并不等效。这表明 CD4 T 细胞起部分作用,同时揭示了 MHC-II 限制的、CD4 非依赖性机制。从 PIV 疫苗接种的 WT 小鼠向幼稚的 CD4 缺陷 (CD4 KO) 小鼠过继转移 CD4 T 细胞证明了抗原经验丰富的 CD4 T 细胞足以产生保护。相反,将幼稚的 CD4 T 细胞转移到 PIV 疫苗接种的 CD4 KO 小鼠中会加重疾病。使用 Tbet 缺陷 (Tbet KO) 小鼠,我们表明 Th1 亚群 CD4 T 细胞在疫苗保护中起部分作用。此外,Tbet 对 Th1 非依赖性的作用暗示了 PIV 疫苗接种的 Tbet KO 和 CD4 KO 小鼠之间疾病存在显著差异。干扰素 γ被证明有助于宿主炎症反应,但不促进细菌清除。总之,这些发现表明,针对实验 Q 热的鼠模型的疫苗诱导的保护性免疫需要 MHC-II 限制的、CD4 T 细胞依赖性和非依赖性机制,这些机制可用于新一代人类 Q 热疫苗。

相似文献

5
Identification of CD4+ T cell epitopes in C. burnetii antigens targeted by antibody responses.
PLoS One. 2011 Mar 15;6(3):e17712. doi: 10.1371/journal.pone.0017712.
6
Roles of major histocompatibility complex class II in inducing protective immune responses to influenza vaccination.
J Virol. 2014 Jul;88(14):7764-75. doi: 10.1128/JVI.00748-14. Epub 2014 Apr 23.
7
The Feasibility of Using Avirulent Nine Mile Phase II Viable Bacteria as a Live Attenuated Vaccine Against Q fever.
Front Immunol. 2021 Oct 21;12:754690. doi: 10.3389/fimmu.2021.754690. eCollection 2021.
8
Exploratory study on Th1 epitope-induced protective immunity against Coxiella burnetii infection.
PLoS One. 2014 Jan 30;9(1):e87206. doi: 10.1371/journal.pone.0087206. eCollection 2014.
10
Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice.
J Immunol. 2007 Dec 15;179(12):8372-80. doi: 10.4049/jimmunol.179.12.8372.

引用本文的文献

1
Pathogenicity and Virulence of Coxiella burnetii: Focus on Q fever.
Virulence. 2025 Dec;16(1):2495842. doi: 10.1080/21505594.2025.2495842. Epub 2025 Jun 19.
3
Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of .
Pathogens. 2024 May 14;13(5):405. doi: 10.3390/pathogens13050405.
5
Q fever immunology: the quest for a safe and effective vaccine.
NPJ Vaccines. 2023 Sep 7;8(1):133. doi: 10.1038/s41541-023-00727-6.
7
Immunogenicity and Reactogenicity in Q Fever Vaccine Development.
Front Immunol. 2022 May 26;13:886810. doi: 10.3389/fimmu.2022.886810. eCollection 2022.
8
Evaluation of a Human T Cell-Targeted Multi-Epitope Vaccine for Q Fever in Animal Models of Immunity.
Front Immunol. 2022 May 16;13:901372. doi: 10.3389/fimmu.2022.901372. eCollection 2022.
9
Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing.
Adv Sci (Weinh). 2022 Jun;9(17):e2105904. doi: 10.1002/advs.202105904. Epub 2022 Apr 7.
10
The Feasibility of Using Avirulent Nine Mile Phase II Viable Bacteria as a Live Attenuated Vaccine Against Q fever.
Front Immunol. 2021 Oct 21;12:754690. doi: 10.3389/fimmu.2021.754690. eCollection 2021.

本文引用的文献

2
Q Fever in Southern California: a Case Series of 20 Patients from a VA Medical Center.
Am J Trop Med Hyg. 2019 Jul;101(1):33-39. doi: 10.4269/ajtmh.18-0283.
4
IL-6 promotes the differentiation of a subset of naive CD8+ T cells into IL-21-producing B helper CD8+ T cells.
J Exp Med. 2016 Oct 17;213(11):2281-2291. doi: 10.1084/jem.20160417. Epub 2016 Sep 26.
5
Primary vaccine failure to routine vaccines: Why and what to do?
Hum Vaccin Immunother. 2016;12(1):239-43. doi: 10.1080/21645515.2015.1093263.
7
Roles of major histocompatibility complex class II in inducing protective immune responses to influenza vaccination.
J Virol. 2014 Jul;88(14):7764-75. doi: 10.1128/JVI.00748-14. Epub 2014 Apr 23.
8
Human dose response relation for airborne exposure to Coxiella burnetii.
BMC Infect Dis. 2013 Oct 21;13:488. doi: 10.1186/1471-2334-13-488.
10
Role of innate and adaptive immunity in the control of Q fever.
Adv Exp Med Biol. 2012;984:273-86. doi: 10.1007/978-94-007-4315-1_14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验