Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA.
Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.
Infect Immun. 2020 Feb 20;88(3). doi: 10.1128/IAI.00824-19.
To understand the role of major histocompatibility complex class I (MHC-I) and MHC-II in vaccine-mediated protection against , we evaluated the protective efficacy of a formalin-inactivated Nine Mile phase I vaccine (PIV) in β-microglobulin-deficient (B2m KO) and MHC-II-deficient (MHC-II KO) mice. Vaccination reduced disease severity in wild-type (WT) and B2m KO mice but failed to reduce bacterial burden in MHC-II KO mice. This suggests that the MHC-II antigen presentation pathway is required for PIV-mediated protection against infection. MHC-I and MHC-II affect antibody isotype switching, since both PIV-vaccinated B2m KO and MHC-II KO mice produced less -specific IgG than PIV-vaccinated WT mice. Interestingly, MHC-II and CD4 deficiencies were not equivalent in terms of splenomegaly and bacterial clearance. This demonstrates a partial role for CD4 T cells while revealing MHC-II-restricted, CD4-independent mechanisms. Adoptive transfer of CD4 T cells from PIV-vaccinated WT mice to naive CD4-deficient (CD4 KO) mice demonstrated that antigen-experienced CD4 T cells are sufficient to generate protection. Conversely, transfer of naive CD4 T cells to PIV-vaccinated CD4 KO mice exacerbates disease. Using Tbet-deficient (Tbet KO) mice, we showed a partial role for Th1 subset CD4 T cells in vaccine protection. Furthermore, Th1-independent roles for Tbet were suggested by significant differences in disease between PIV-vaccinated Tbet KO and CD4 KO mice. Interferon gamma was shown to contribute to the host inflammatory response but not bacterial clearance. Collectively, these findings suggest that vaccine-induced protective immunity against a murine model of experimental Q fever requires MHC-II-restricted, CD4 T cell-dependent and -independent mechanisms that can be exploited for a new-generation human Q fever vaccine.
为了了解主要组织相容性复合体 I 类 (MHC-I) 和 MHC-II 在疫苗介导的对 保护中的作用,我们评估了福尔马林灭活的 9 英里 I 期疫苗 (PIV) 在β-微球蛋白缺陷 (B2m KO) 和 MHC-II 缺陷 (MHC-II KO) 小鼠中的保护效力。疫苗接种可减轻野生型 (WT) 和 B2m KO 小鼠的疾病严重程度,但不能减轻 MHC-II KO 小鼠的细菌负荷。这表明 MHC-II 抗原呈递途径是 PIV 介导的对 感染保护所必需的。MHC-I 和 MHC-II 影响抗体同种型转换,因为 PIV 疫苗接种的 B2m KO 和 MHC-II KO 小鼠产生的针对 的 IgG 特异性比 PIV 疫苗接种的 WT 小鼠少。有趣的是,MHC-II 和 CD4 缺陷在脾肿大和细菌清除方面并不等效。这表明 CD4 T 细胞起部分作用,同时揭示了 MHC-II 限制的、CD4 非依赖性机制。从 PIV 疫苗接种的 WT 小鼠向幼稚的 CD4 缺陷 (CD4 KO) 小鼠过继转移 CD4 T 细胞证明了抗原经验丰富的 CD4 T 细胞足以产生保护。相反,将幼稚的 CD4 T 细胞转移到 PIV 疫苗接种的 CD4 KO 小鼠中会加重疾病。使用 Tbet 缺陷 (Tbet KO) 小鼠,我们表明 Th1 亚群 CD4 T 细胞在疫苗保护中起部分作用。此外,Tbet 对 Th1 非依赖性的作用暗示了 PIV 疫苗接种的 Tbet KO 和 CD4 KO 小鼠之间疾病存在显著差异。干扰素 γ被证明有助于宿主炎症反应,但不促进细菌清除。总之,这些发现表明,针对实验 Q 热的鼠模型的疫苗诱导的保护性免疫需要 MHC-II 限制的、CD4 T 细胞依赖性和非依赖性机制,这些机制可用于新一代人类 Q 热疫苗。