Suppr超能文献

近电极溶液化学在低应用电势下对细菌附着和穿孔的作用。

Role of Near-Electrode Solution Chemistry on Bacteria Attachment and Poration at Low Applied Potentials.

机构信息

Department of Chemical Engineering, University of Illinois at Chicago, 945 West Taylor Street, Chicago, Illinois 60607, United States.

MSU-Fraunhofer Center for Coatings and Diamond Technologies, 1449 Engineering Research Court, East Lansing, Michigan 48824, United States.

出版信息

Environ Sci Technol. 2020 Jan 7;54(1):446-455. doi: 10.1021/acs.est.9b04313. Epub 2019 Dec 19.

Abstract

This research investigated mechanisms for biofouling control at boron-doped diamond (BDD) electrode surfaces polarized at low applied potentials (e.g., -0.2 to 1.0 V vs Ag/AgCl), using as a model organism. Results indicated that electrostatic interactions between bacteria and ionic electrode functional groups facilitated bacteria attachment at the open-circuit potential (OCP). However, under polarization, the applied potential governed these electrostatic interactions and electrochemical reactions resulted in surface bubble formation and near-surface pH modulation that decreased surface attachment under anodic conditions. The poration of the attached bacteria occurred at OCP conditions and increased with the applied potential. Scanning electrochemical microscopy (SECM) provided near-surface pH and oxidant formation measurements under anodic and cathodic polarizations. The near-surface pH was 3.1 at 1.0 V vs Ag/AgCl and 8.0 at -0.2 V vs Ag/AgCl and was possibly a contributor to bacteria poration. Interpretation of SECM data using a reactive transport model allowed for a better understanding of the near-electrode chemistry. Under cathodic conditions, the primary oxidant formed was HO, and under anodic conditions, a combination of HO, Cl, HO, Cl, and Cl formations likely contributed to bacteria poration at potentials as low as 0.5 V vs Ag/AgCl.

摘要

本研究调查了在低应用电位(例如-0.2 至 1.0 V 相对于 Ag/AgCl)下极化的掺硼金刚石(BDD)电极表面的生物污垢控制机制,使用 作为模型生物。结果表明,细菌和离子电极官能团之间的静电相互作用有助于在开路电位(OCP)下细菌附着。然而,在极化下,施加的电位控制这些静电相互作用和电化学反应导致表面气泡形成和近表面 pH 调节,在阳极条件下减少表面附着。在 OCP 条件下发生了附着细菌的穿孔,并且随着施加的电位增加而增加。扫描电化学显微镜(SECM)提供了在阳极和阴极极化下的近表面 pH 和氧化剂形成测量。在 1.0 V 相对于 Ag/AgCl 时近表面 pH 为 3.1,在-0.2 V 相对于 Ag/AgCl 时近表面 pH 为 8.0,可能是细菌穿孔的一个贡献因素。使用反应传输模型对 SECM 数据的解释有助于更好地理解近电极化学。在阴极条件下,形成的主要氧化剂是 HO,在阳极条件下,HO、Cl、HO、Cl 和 Cl 形成的组合可能有助于在低至 0.5 V 相对于 Ag/AgCl 的电位下穿孔细菌。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验