Department of Biochemistry and Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States.
Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
Biochemistry. 2019 Dec 24;58(51):5117-5134. doi: 10.1021/acs.biochem.9b00605. Epub 2019 Dec 16.
Small-angle neutron scattering (SANS) measurements were pursued to study human vitronectin, a protein found in tissues and the circulation that regulates cell adhesion/migration and proteolytic cascades that govern hemostasis and pericellular proteolysis. Many of these functions occur via interactions with its binding partner, plasminogen activator inhibitor-1 (PAI-1), the chief inhibitor of proteases that lyse and activate plasminogen. We focused on a region of vitronectin that remains uncharacterized from previous X-ray scattering, nuclear magnetic resonance, and computational modeling approaches and which we propose is involved in binding to PAI-1. This region, which bridges the N-terminal somatomedin B (SMB) domain with a large central β-propeller domain of vitronectin, appears unstructured and has characteristics of an intrinsically disordered domain (IDD). The effect of osmolytes was evaluated using circular dichroism and SANS to explore the potential of the IDD to undergo a disorder-to-order transition. The results suggest that the IDD favors a more ordered structure under osmotic pressure; SANS shows a smaller radius of gyration () and a more compact fold of the IDD upon addition of osmolytes. To test whether PAI-1 binding is also coupled to folding within the IDD structure, a set of SANS experiments with contrast variation were performed on the complex of PAI-1 with a vitronectin fragment corresponding to the N-terminal 130 amino acids (denoted the SMB-IDD because it contains the SMB domain and IDD in linear sequence). Analysis of the SANS data using the Ensemble Optimization Method confirms that the SMB-IDD adopts a more compact configuration when bound to PAI-1. Calculated structures for the PAI-1:SMB-IDD complex suggest that the IDD provides an interaction surface outside of the primary PAI-1-binding site located within the SMB domain; this binding is proposed to lead to the assembly of higher-order structures of vitronectin and PAI-1 commonly found in tissues.
采用小角中子散射(SANS)测量方法研究了人血纤连蛋白,这是一种存在于组织和循环中的蛋白质,能够调节细胞黏附和迁移,并调控止血和细胞周蛋白酶解级联反应。这些功能中的许多功能是通过与结合伴侣纤溶酶原激活物抑制剂-1(PAI-1)相互作用来实现的,PAI-1 是裂解和激活纤溶酶原的蛋白酶的主要抑制剂。我们专注于血纤连蛋白的一个区域,该区域之前通过 X 射线散射、核磁共振和计算建模方法尚未得到表征,我们提出该区域与 PAI-1 结合有关。该区域连接血纤连蛋白的 N 端 somatomedin B(SMB)结构域和较大的中央β-螺旋桨结构域,表现出无规卷曲的特征,具有无规卷曲结构域(ID)的特征。通过使用圆二色性和 SANS 评估渗透剂的影响来探索 IDD 发生无序到有序转变的潜力。结果表明,在渗透压下 IDD 有利于形成更有序的结构;SANS 显示,在添加渗透剂后,ID 的回转半径()更小,折叠更紧凑。为了测试 PAI-1 结合是否也与 IDD 结构的折叠相关,我们对 PAI-1 与血纤连蛋白片段(对应于 N 端 130 个氨基酸,称为 SMB-IDD,因为它在线性序列中包含 SMB 结构域和 IDD)的复合物进行了一系列具有对比变化的 SANS 实验。使用集合优化方法对 SANS 数据进行分析证实,SMB-IDD 与 PAI-1 结合时采用更紧凑的构象。计算得到的 PAI-1:SMB-IDD 复合物结构表明,ID 提供了位于 SMB 结构域内的主要 PAI-1 结合位点之外的相互作用表面;这种结合被认为导致组织中常见的血纤连蛋白和 PAI-1 的高级结构组装。