Suppr超能文献

利用互补的机械合成和计算结构预测方法高效筛选三元分子离子共晶。

Efficient Screening for Ternary Molecular Ionic Cocrystals Using a Complementary Mechanosynthesis and Computational Structure Prediction Approach.

机构信息

Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE.

New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE.

出版信息

Chemistry. 2020 Apr 9;26(21):4752-4765. doi: 10.1002/chem.201904672. Epub 2020 Mar 24.

Abstract

The discovery of molecular ionic cocrystals (ICCs) of active pharmaceutical ingredients (APIs) widens the opportunities for optimizing the physicochemical properties of APIs whilst facilitating the delivery of multiple therapeutic agents. However, ICCs are often observed serendipitously in crystallization screens and the factors dictating their crystallization are poorly understood. We demonstrate here that mechanochemical ball milling is a versatile technique for the reproducible synthesis of ternary molecular ICCs in less than 30 min of grinding with or without solvent. Computational crystal structure prediction (CSP) calculations have been performed on ternary molecular ICCs for the first time and the observed crystal structures of all the ICCs were correctly predicted. Periodic dispersion-corrected DFT calculations revealed that all the ICCs are thermodynamically stable (mean stabilization energy=-2 kJ mol ) relative to the crystallization of a physical mixture of the binary salt and acid. The results suggest that a combined mechanosynthesis and CSP approach could be used to target the synthesis of higher-order molecular ICCs with functional properties.

摘要

活性药物成分(APIs)的分子离子共晶(ICCs)的发现拓宽了优化 APIs 物理化学性质的机会,同时促进了多种治疗剂的传递。然而,ICCs 通常在结晶筛选中偶然发现,并且决定它们结晶的因素知之甚少。我们在这里证明,机械化学球磨是一种在不到 30 分钟的研磨时间内重现性合成三元分子 ICC 的通用技术,无论是否使用溶剂。首次对三元分子 ICC 进行了计算晶体结构预测(CSP)计算,并且正确预测了所有 ICC 的观察到的晶体结构。周期性分散校正的 DFT 计算表明,所有 ICC 相对于二元盐和酸的物理混合物的结晶在热力学上都是稳定的(平均稳定能=-2kJmol)。结果表明,机械合成和 CSP 方法的结合可用于靶向具有功能性质的更高阶分子 ICC 的合成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7628/7187361/7360d67b7425/CHEM-26-4752-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验