Dhokale Bhausaheb, Eyövge Cavit, Winczewski Jędrzej, Ali Wesam A, Younes Zena, Hernandez Hector H, Li Liang, Managutti Praveen B, Alkhidir Tamador, Shetty Dinesh, Gardeniers Han, Susarrey-Arce Arturo, Mohamed Sharmarke
Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates.
Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States of America.
Cryst Growth Des. 2025 Mar 31;25(8):2402-2408. doi: 10.1021/acs.cgd.4c01523. eCollection 2025 Apr 16.
Mechanochemical coupling reactions are typically single-site events that are thermally driven, require an inert atmosphere, and are kinetically slow under ball milling conditions. Here, we demonstrate the rapid 4-fold single-pot mechanochemical C-N coupling of tetrabromopyrene and phenothiazine leading to a novel pyrene-phenothiazine (PYR-PTZ) molecule that is shown to be an effective hole-transport material (HTM) in a perovskite solar cell (PSC). When compared to previously reported mechanochemical C-N coupling reactions, the mechanosynthesis of PYR-PTZ is achieved in just 99 min of ball-milling under ambient conditions without a glovebox or the need for external heating. This represents an advance over previous methods for the synthesis of HTMs and opens new avenues for exploring the discovery of other organic HTMs for PSC applications. The photophysics, crystal structure, and electron transport properties of the novel HTM have been characterized using a combination of experimental and density functional theory methods. In an encapsulated PSC, the photoconversion efficiency of PYR-PTZ is comparable to that of the widely used spiro-MeOTAD molecule, but the stability of PYR-PTZ is superior in a naked PSC after 4 weeks. This work demonstrates the value of mechanochemistry in the sustainable synthesis of new organic HTMs at significantly reduced costs, opening up new opportunities for mechanochemistry in optoelectronics.
机械化学偶联反应通常是由热驱动的单位点事件,需要惰性气氛,并且在球磨条件下动力学缓慢。在这里,我们展示了四溴芘和吩噻嗪的快速4倍单锅机械化学C-N偶联反应,生成了一种新型的芘-吩噻嗪(PYR-PTZ)分子,该分子在钙钛矿太阳能电池(PSC)中被证明是一种有效的空穴传输材料(HTM)。与先前报道的机械化学C-N偶联反应相比,PYR-PTZ的机械合成在环境条件下仅需99分钟的球磨即可完成,无需手套箱或外部加热。这代表了在合成HTM的先前方法上的进步,并为探索用于PSC应用的其他有机HTM开辟了新途径。使用实验和密度泛函理论方法相结合的方式对新型HTM的光物理、晶体结构和电子传输性质进行了表征。在封装的PSC中,PYR-PTZ的光转换效率与广泛使用的螺环-MeOTAD分子相当,但在裸PSC中4周后,PYR-PTZ的稳定性更优。这项工作证明了机械化学在以显著降低的成本可持续合成新型有机HTM方面的价值,为光电子学中的机械化学开辟了新机遇。