Liu Yan, Qin Lang, Cheng Zhuo, Goetze Josh W, Kong Fanhe, Fan Jonathan A, Fan Liang-Shih
Department of Chemical and Biomolecular Engineering, The Ohio State University, 151W Woodruff Ave, Columbus, OH, 43210, USA.
Department of Electrical Engineering, Ginzton Laboratory, Spilker Engineering and Applied Sciences, Stanford University, 348 Via Pueblo Mall, Stanford, CA, 94305, USA.
Nat Commun. 2019 Dec 3;10(1):5503. doi: 10.1038/s41467-019-13560-0.
Chemical looping methane partial oxidation provides an energy and cost effective route for methane utilization. However, there is considerable CO co-production in current chemical looping systems, rendering a decreased productivity in value-added fuels or chemicals. In this work, we demonstrate that the co-production of CO can be dramatically suppressed in methane partial oxidation reactions using iron oxide nanoparticles embedded in mesoporous silica matrix. We experimentally obtain near 100% CO selectivity in a cyclic redox system at 750-935 °C, which is a significantly lower temperature range than in conventional oxygen carrier systems. Density functional theory calculations elucidate the origins for such selectivity and show that low-coordinated lattice oxygen atoms on the surface of nanoparticles significantly promote Fe-O bond cleavage and CO formation. We envision that embedded nanostructured oxygen carriers have the potential to serve as a general materials platform for redox reactions with nanomaterials at high temperatures.
化学链甲烷部分氧化为甲烷利用提供了一条节能且经济高效的途径。然而,当前的化学链系统中会联产大量的一氧化碳,导致增值燃料或化学品的生产率降低。在这项工作中,我们证明了在嵌入介孔二氧化硅基质的氧化铁纳米颗粒用于甲烷部分氧化反应时,一氧化碳的联产可以被显著抑制。我们通过实验在750 - 935°C的循环氧化还原系统中获得了接近100%的一氧化碳选择性,这一温度范围比传统氧载体系统要低得多。密度泛函理论计算阐明了这种选择性的来源,并表明纳米颗粒表面低配位的晶格氧原子显著促进了铁 - 氧键的断裂和一氧化碳的形成。我们设想,嵌入的纳米结构氧载体有潜力作为高温下与纳米材料进行氧化还原反应的通用材料平台。