Ruan Chongyan, Wang Xijun, Wang Chaojie, Zheng Lirong, Li Lin, Lin Jian, Liu Xiaoyan, Li Fanxing, Wang Xiaodong
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
Nat Commun. 2022 Feb 7;13(1):718. doi: 10.1038/s41467-022-28370-0.
Selective oxidation of ammonia to nitric oxide over platinum-group metal alloy gauzes is the crucial step for nitric acid production, a century-old yet greenhouse gas and capital intensive process. Therefore, developing alternative ammonia oxidation technologies with low environmental impacts and reduced catalyst cost are of significant importance. Herein, we propose and demonstrate a chemical looping ammonia oxidation catalyst and process to replace the costly noble metal catalysts and to reduce greenhouse gas emission. The proposed process exhibit near complete NH conversion and exceptional NO selectivity with negligible NO production, using nonprecious VO redox catalyst at 650 C. Operando spectroscopy techniques and density functional theory calculations point towards a modified, temporally separated Mars-van Krevelen mechanism featuring a reversible V/V redox cycle. The V = O sites are suggested to be the catalytically active center leading to the formation of the oxidation products. Meanwhile, both V = O and doubly coordinated oxygen participate in the hydrogen transfer process. The outstanding performance originates from the low activation energies for the successive hydrogen abstraction, facile NO formation as well as the easy regeneration of V = O species. Our results highlight a transformational process in extending the chemical looping strategy to producing base chemicals in a sustainable and cost-effective manner.
在铂族金属合金网上将氨选择性氧化为一氧化氮是硝酸生产的关键步骤,这是一个有着百年历史但却产生温室气体且资本密集的过程。因此,开发具有低环境影响和降低催化剂成本的替代氨氧化技术具有重要意义。在此,我们提出并展示了一种化学链氨氧化催化剂及工艺,以取代昂贵的贵金属催化剂并减少温室气体排放。所提出的工艺在650℃下使用非贵金属VO氧化还原催化剂时,氨转化率接近完全,一氧化氮选择性优异,一氧化二氮生成量可忽略不计。原位光谱技术和密度泛函理论计算表明,该过程遵循一种经过改进的、时间上分离的Mars-van Krevelen机制,其特征是可逆的V/V氧化还原循环。V=O位点被认为是导致氧化产物形成的催化活性中心。同时,V=O和双配位氧都参与了氢转移过程。出色的性能源于连续氢提取的低活化能、一氧化氮的容易形成以及V=O物种的易于再生。我们的结果突出了将化学链策略扩展到以可持续且经济高效的方式生产基础化学品的变革性过程。