Suppr超能文献

用于可逆和稳定热化学储氧的水滑石衍生氧化还原吸附剂的前驱体工程

Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage.

作者信息

High Michael, Patzschke Clemens F, Zheng Liya, Zeng Dewang, Gavalda-Diaz Oriol, Ding Nan, Chien Ka Ho Horace, Zhang Zili, Wilson George E, Berenov Andrey V, Skinner Stephen J, Sedransk Campbell Kyra L, Xiao Rui, Fennell Paul S, Song Qilei

机构信息

Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.

Key Laboratory of Energy Thermal Conversion and Control (Ministry of Education), School of Energy and Environment, Southeast University, Nanjing, 210096, P.R. China.

出版信息

Nat Commun. 2022 Aug 30;13(1):5109. doi: 10.1038/s41467-022-32593-6.

Abstract

Chemical looping processes based on multiple-step reduction and oxidation of metal oxides hold great promise for a variety of energy applications, such as CO capture and conversion, gas separation, energy storage, and redox catalytic processes. Copper-based mixed oxides are one of the most promising candidate materials with a high oxygen storage capacity. However, the structural deterioration and sintering at high temperatures is one key scientific challenge. Herein, we report a precursor engineering approach to prepare durable copper-based redox sorbents for use in thermochemical looping processes for combustion and gas purification. Calcination of the CuMgAl hydrotalcite precursors formed mixed metal oxides consisting of CuO nanoparticles dispersed in the Mg-Al oxide support which inhibited the formation of copper aluminates during redox cycling. The copper-based redox sorbents demonstrated enhanced reaction rates, stable O storage capacity over 500 redox cycles at 900 °C, and efficient gas purification over a broad temperature range. We expect that our materials design strategy has broad implications on synthesis and engineering of mixed metal oxides for a range of thermochemical processes and redox catalytic applications.

摘要

基于金属氧化物多步还原和氧化的化学链过程在多种能源应用中具有巨大潜力,如二氧化碳捕集与转化、气体分离、能量存储以及氧化还原催化过程。铜基混合氧化物是最具潜力的候选材料之一,具有高储氧能力。然而,高温下的结构劣化和烧结是一个关键的科学挑战。在此,我们报道一种前驱体工程方法,用于制备耐用的铜基氧化还原吸附剂,用于燃烧和气体净化的热化学链过程。煅烧CuMgAl水滑石前驱体形成了由分散在Mg-Al氧化物载体中的CuO纳米颗粒组成的混合金属氧化物,这抑制了氧化还原循环过程中铜铝酸盐的形成。这种铜基氧化还原吸附剂表现出更高的反应速率,在900°C下经过500次氧化还原循环仍具有稳定的储氧能力,并且在较宽的温度范围内具有高效的气体净化能力。我们期望我们的材料设计策略对一系列热化学过程和氧化还原催化应用的混合金属氧化物的合成与工程具有广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d2d/9427752/54e200ee05b1/41467_2022_32593_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验