Suppr超能文献

将全基因组关联研究与转录组分析相结合,以检测控制玉米(Zea mays L.)籽粒干燥速率的基因。

Integrating a genome-wide association study with transcriptomic analysis to detect genes controlling grain drying rate in maize (Zea may, L.).

机构信息

Institute of Cereal Crops, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Maize Biology, Zhengzhou, 450002, China.

Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.

出版信息

Theor Appl Genet. 2020 Feb;133(2):623-634. doi: 10.1007/s00122-019-03492-0. Epub 2019 Dec 3.

Abstract

Candidate genes on grain drying rate (GDR) were identified, and drying molecular mechanism of grain was explored by integrating genome-wide association with transcriptomic analysis in maize. Grain drying rate (GDR) is a key determinant of grain moisture at harvest. Here, a genome-wide association study (GWAS) of 309 inbred maize lines was used to identify single-nucleotide polymorphisms (SNPs) associated with drying rates of grain, cob and bract. Out of 217,933 SNPs, seven significant SNPs were repeatedly identified in four environments (P < 10). Based on genomic position of significant SNPs, six candidate genes were identified, one of which (Zm00001d047468) was verified by transcriptomic data between inbred lines with high and low GDR, indicating stable and reliable correlation with GDR. To further detect more genes correlated with GDR and explore drying molecular mechanism of grain, expression profile of all GWAS-identified genes (4941) detected from different environments, tissues and developmental stage was evaluated by transcriptomic data of six inbred lines with high or low GDR. Results revealed 162 genes exhibit up-regulated expression and another 123 down-regulated in three higher-GDR inbred lines. Based on GO enrichment, 162 up-regulated genes were significantly enriched into grain primary metabolic process, nitrogen compound metabolic process and macromolecule metabolic process (P < 0.05), which indicated grain filling imposes notable influence on GDR before and after physiological maturity. Our results lay foundation in accelerating development of higher-GDR maize germplasm through marker-assisted selection and clarifying genetic mechanism of GDR in maize.

摘要

候选基因与谷物干燥速率(GDR)有关,通过整合全基因组关联分析与转录组分析,探索了谷物干燥的分子机制。谷物干燥速率(GDR)是收获时谷物水分的关键决定因素。本研究利用 309 个自交系的全基因组关联研究(GWAS),鉴定与谷物、玉米穗轴和苞叶干燥速率相关的单核苷酸多态性(SNP)。在 217933 个 SNP 中,有 7 个显著 SNP 在四个环境中重复鉴定(P<10)。基于显著 SNP 的基因组位置,鉴定出 6 个候选基因,其中一个(Zm00001d047468)通过高 GDR 和低 GDR 自交系之间的转录组数据得到验证,表明与 GDR 具有稳定可靠的相关性。为了进一步检测更多与 GDR 相关的基因,探索谷物干燥的分子机制,利用 6 个高 GDR 或低 GDR 自交系的转录组数据,评估了所有 GWAS 鉴定的基因(4941 个)在不同环境、组织和发育阶段的表达谱。结果表明,在三个高 GDR 自交系中,有 162 个基因表达上调,123 个基因表达下调。基于 GO 富集分析,上调的 162 个基因显著富集到谷物初级代谢过程、氮化合物代谢过程和大分子代谢过程(P<0.05),表明在生理成熟前后,谷物灌浆对 GDR 有显著影响。本研究为通过标记辅助选择加速高 GDR 玉米种质资源的发展以及阐明玉米 GDR 的遗传机制奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验