Suppr超能文献

光子、质子和碳离子辐射对不同肿瘤细胞系中外膜钙网蛋白暴露影响的比较。

Comparison of the effects of photon, proton and carbon-ion radiation on the ecto-calreticulin exposure in various tumor cell lines.

作者信息

Huang Yangle, Dong Yuanli, Zhao Jingfang, Zhang Lijia, Kong Lin, Lu Jiade Jay

机构信息

Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China.

Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China.

出版信息

Ann Transl Med. 2019 Oct;7(20):542. doi: 10.21037/atm.2019.09.128.

Abstract

BACKGROUND

Accumulating evidence suggested that radiotherapy can activate anti-tumor immune responses by triggering immunogenic cell death (ICD) of tumor cells. Calreticulin is regarded as one of the most important markers of ICD. The cell surface translocation of calreticulin (ecto-CRT) serves as an "eat me" signal for phagocytosis of dying cells, which plays a pivotal role in activating anti-tumor immunity. However, there is limited knowledge describing the effects of proton and carbon-ion radiation on ecto-CRT exposure. Hence, we investigated ecto-CRT exposure in multiple human carcinoma cell lines irradiated by proton and carbon-ion in comparison to photon.

METHODS

This study examined four human cancer cell lines including A549 (lung adenocarcinoma), U251MG (glioma), Tca8113 (tongue squamous carcinoma), and CNE-2 (nasopharyngeal carcinoma). Cell lines were irradiated with photon, proton or carbon-ion at 0, 2, 4, 10 Gy (physical dose). The ecto-CRT exposure level was analyzed by flow cytometry at 12, 24, and 48 h post-irradiation. The median fluorescence intensity was calculated by FlowJo.

RESULTS

All three types of radial beam increased ecto-CRT exposure of the 4 tumor cell lines in a time-dependent manner. Ecto-CRT exposure significantly elevated 1.5-2.4 times over 48 h post-irradiation compared with controls (P<0.05). Proton and photon increased ecto-CRT exposure with dose escalation. Photon and proton at 10 Gy increased the most ecto-CRT exposure (P<0.05), while carbon-ion increased most ecto-CRT exposure at 4 Gy rather than 10 or 2 Gy. When compared with iso-physical dose at 48 h post-irradiation, proton showed a similar effectiveness with photon. While carbon-ion has significantly stronger effects on increasing ecto-CRT than proton and photon at 2 and 4 Gy, but changed oppositely at 10 Gy (P<0.05).

CONCLUSIONS

All the three types of radiation can increase the ecto-CRT exposure in a time-dependent manner. Proton and photon radiation were equally effective in inducing ecto-CRT exposure, while carbon-ion revealed a different effectiveness in comparison to photon and proton.

摘要

背景

越来越多的证据表明,放疗可通过触发肿瘤细胞的免疫原性细胞死亡(ICD)来激活抗肿瘤免疫反应。钙网蛋白被视为ICD最重要的标志物之一。钙网蛋白的细胞表面易位(ecto-CRT)作为垂死细胞吞噬作用的“吃我”信号,在激活抗肿瘤免疫中起关键作用。然而,关于质子和碳离子辐射对外源钙网蛋白暴露的影响,相关知识有限。因此,我们研究了与光子辐射相比,质子和碳离子辐射对多种人癌细胞系中外源钙网蛋白暴露的影响。

方法

本研究检测了四种人癌细胞系,包括A549(肺腺癌)、U251MG(胶质瘤)、Tca8113(舌鳞状癌)和CNE-2(鼻咽癌)。细胞系分别接受0、2、4、10 Gy(物理剂量)的光子、质子或碳离子辐射。在辐射后12、24和48小时,通过流式细胞术分析外源钙网蛋白暴露水平。使用FlowJo计算中位荧光强度。

结果

所有三种类型的辐射束均以时间依赖性方式增加了4种肿瘤细胞系的外源钙网蛋白暴露。与对照组相比,辐射后48小时外源钙网蛋白暴露显著升高1.5至2.4倍(P<0.05)。质子和光子随着剂量增加而增加外源钙网蛋白暴露。10 Gy的光子和质子增加的外源钙网蛋白暴露最多(P<0.05),而碳离子在4 Gy时增加的外源钙网蛋白暴露最多,而非10 Gy或2 Gy。与辐射后48小时的等物理剂量相比,质子与光子显示出相似的效果。虽然在2 Gy和4 Gy时,碳离子对外源钙网蛋白增加的影响明显强于质子和光子,但在10 Gy时情况相反(P<0.05)。

结论

所有三种类型的辐射均可时间依赖性地增加外源钙网蛋白暴露。质子和光子辐射在诱导外源钙网蛋白暴露方面同样有效,而碳离子与光子和质子相比显示出不同的有效性。

相似文献

2
The Impacts of Different Types of Radiation on the CRT and PDL1 Expression in Tumor Cells Under Normoxia and Hypoxia.
Front Oncol. 2020 Aug 19;10:1610. doi: 10.3389/fonc.2020.01610. eCollection 2020.
3
Distinct roles in phagocytosis of the early and late increases of cell surface calreticulin induced by oxaliplatin.
Biochem Biophys Rep. 2022 Feb 1;29:101222. doi: 10.1016/j.bbrep.2022.101222. eCollection 2022 Mar.
6
Ecto-calreticulin in immunogenic chemotherapy.
Immunol Rev. 2007 Dec;220:22-34. doi: 10.1111/j.1600-065X.2007.00567.x.
7
Engineering Calreticulin-Targeting Monobodies to Detect Immunogenic Cell Death in Cancer Chemotherapy.
Cancers (Basel). 2021 Jun 4;13(11):2801. doi: 10.3390/cancers13112801.
8
Biphasic Increases of Cell Surface Calreticulin Following Treatment with Mitoxantrone.
Biol Pharm Bull. 2020 Oct 1;43(10):1595-1599. doi: 10.1248/bpb.b20-00319. Epub 2020 Jul 29.

引用本文的文献

1
Roles of the phagocytosis checkpoint in radiotherapy.
Cell Death Dis. 2025 Aug 20;16(1):630. doi: 10.1038/s41419-025-07921-5.
2
Carbon ion irradiation mobilizes antitumor immunity: from concept to the clinic.
Radiat Oncol. 2025 May 22;20(1):85. doi: 10.1186/s13014-025-02647-2.
3
Clinical application of high-LET radiotherapy combined with immunotherapy in malignant tumors.
Precis Radiat Oncol. 2024 Mar 20;8(1):42-46. doi: 10.1002/pro6.1225. eCollection 2024 Mar.
5
Integrative Approaches in Non-Small Cell Lung Cancer Management: The Role of Radiotherapy.
J Clin Med. 2024 Jul 23;13(15):4296. doi: 10.3390/jcm13154296.
6
A future directions of renal cell carcinoma treatment: combination of immune checkpoint inhibition and carbon ion radiotherapy.
Front Immunol. 2024 Jul 18;15:1428584. doi: 10.3389/fimmu.2024.1428584. eCollection 2024.
7
Clinical application of immunogenic cell death inducers in cancer immunotherapy: turning cold tumors hot.
Front Cell Dev Biol. 2024 May 7;12:1363121. doi: 10.3389/fcell.2024.1363121. eCollection 2024.
8
Carbon ion irradiation combined with PD-1 inhibitor trigger abscopal effect in Lewis lung cancer via a threshold dose.
J Cancer. 2024 Feb 25;15(8):2245-2259. doi: 10.7150/jca.91559. eCollection 2024.
9
Combining theranostic/particle therapy with immunotherapy for the treatment of GU malignancies.
BJUI Compass. 2023 Dec 13;5(3):334-344. doi: 10.1002/bco2.316. eCollection 2024 Mar.

本文引用的文献

1
Carbon ion radiotherapy boost in the treatment of glioblastoma: a randomized phase I/III clinical trial.
Cancer Commun (Lond). 2019 Feb 20;39(1):5. doi: 10.1186/s40880-019-0351-2.
3
Lack of differences in radiation-induced immunogenicity parameters between HPV-positive and HPV-negative human HNSCC cell lines.
Radiother Oncol. 2017 Sep;124(3):411-417. doi: 10.1016/j.radonc.2017.08.018. Epub 2017 Sep 12.
4
Charged-particle therapy in cancer: clinical uses and future perspectives.
Nat Rev Clin Oncol. 2017 Aug;14(8):483-495. doi: 10.1038/nrclinonc.2017.30. Epub 2017 Mar 14.
5
Stereotactic Ablative Radiation Therapy Combined With Immunotherapy for Solid Tumors.
Cancer J. 2016 Jul-Aug;22(4):257-66. doi: 10.1097/PPO.0000000000000210.
7
Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?
Nat Rev Clin Oncol. 2016 Aug;13(8):516-24. doi: 10.1038/nrclinonc.2016.30. Epub 2016 Mar 8.
8
Effects of Charged Particles on Human Tumor Cells.
Front Oncol. 2016 Feb 12;6:23. doi: 10.3389/fonc.2016.00023. eCollection 2016.
10
Immunogenic cell death.
Int J Dev Biol. 2015;59(1-3):131-40. doi: 10.1387/ijdb.150061pa.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验