Suppr超能文献

多黏菌素 B 疏松脂多糖双层但使磷脂双层变硬。

Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer.

机构信息

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.

出版信息

Biophys J. 2020 Jan 7;118(1):138-150. doi: 10.1016/j.bpj.2019.11.008. Epub 2019 Nov 16.

Abstract

Multidrug-resistant Gram-negative bacteria have increased the prevalence of a variety of serious diseases in modern times. Polymyxins are used as the last-line therapeutic options for the treatment of infections. However, the mechanism of action of polymyxins remains in dispute. In this work, we used a coarse-grained molecular dynamics simulation to investigate the mechanism of the cationic antimicrobial peptide polymyxin B (PmB) interacting with both the inner and outer membrane models of bacteria. Our results show that the binding of PmB disturbs the outer membrane by displacing the counterions, decreasing the orientation order of the lipopolysaccharide tail, and creating more lipopolysaccharide packing defects. Upon binding onto the inner membrane, in contrast to the traditional killing mechanism that antimicrobial peptides usually use to induce holes in the membrane, PmBs do not permeabilize the inner membrane but stiffen it by filling up the lipid packing defect, increasing the lipid tail order and the membrane bending rigidity as well as restricting the lipid diffusion. PmBs also mediate intermembrane contact and adhesion. These joint effects suggest that PmBs deprive the biological activity of Gram-negative bacteria by sterilizing the cell.

摘要

多重耐药革兰氏阴性菌的出现增加了现代社会多种严重疾病的流行。多黏菌素被用作治疗感染的最后一线治疗选择。然而,多黏菌素的作用机制仍存在争议。在这项工作中,我们使用粗粒化分子动力学模拟来研究阳离子抗菌肽多黏菌素 B(PmB)与细菌内外膜模型相互作用的机制。我们的结果表明,PmB 的结合通过取代反离子、降低脂多糖尾部的取向有序性和产生更多脂多糖包装缺陷来扰乱外膜。与传统的抗菌肽通常用于在膜中诱导孔的杀伤机制相反,PmB 结合到内膜上不会使内膜穿孔,而是通过填充脂质包装缺陷来使内膜变硬,增加脂质尾部有序性和膜弯曲刚性,以及限制脂质扩散。PmB 还介导内膜间的接触和粘附。这些综合效应表明,PmB 通过使革兰氏阴性菌失活来剥夺其生物活性。

相似文献

1
Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer.
Biophys J. 2020 Jan 7;118(1):138-150. doi: 10.1016/j.bpj.2019.11.008. Epub 2019 Nov 16.
2
Polymyxins induce lipid scrambling and disrupt the homeostasis of Gram-negative bacteria membrane.
Biophys J. 2022 Sep 20;121(18):3486-3498. doi: 10.1016/j.bpj.2022.08.007. Epub 2022 Aug 13.
3
Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7587-E7594. doi: 10.1073/pnas.1803975115. Epub 2018 Jul 23.
4
Interactions between polymyxin B and various bacterial membrane mimics: A molecular dynamics study.
Colloids Surf B Biointerfaces. 2022 Mar;211:112288. doi: 10.1016/j.colsurfb.2021.112288. Epub 2021 Dec 16.
7
Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
Biochemistry (Mosc). 2014 May;79(5):459-68. doi: 10.1134/S0006297914050101.
8
Membrane charge and lipid packing determine polymyxin-induced membrane damage.
Commun Biol. 2019 Feb 18;2:67. doi: 10.1038/s42003-019-0297-6. eCollection 2019.
9
Synthesis of a polymyxin derivative for photolabeling studies in the gram-negative bacterium Escherichia coli.
J Pept Sci. 2015 Mar;21(3):231-5. doi: 10.1002/psc.2736. Epub 2015 Jan 13.
10
Through the Lipopolysaccharide Glass: A Potent Antimicrobial Peptide Induces Phase Changes in Membranes.
Biochemistry. 2017 Mar 21;56(11):1672-1679. doi: 10.1021/acs.biochem.6b01063. Epub 2017 Mar 7.

引用本文的文献

1
Depth-Resolved Temperature-Dependent Penetration of Polymyxin B in Phospholipids/Lipopolysaccharide Asymmetric Bilayers.
ACS Omega. 2025 Jan 14;10(3):2616-2627. doi: 10.1021/acsomega.4c07648. eCollection 2025 Jan 28.
2
Role of Divalent Ions in Membrane Models of Polymyxin-Sensitive and Resistant Gram-Negative Bacteria.
J Chem Inf Model. 2025 Feb 10;65(3):1476-1491. doi: 10.1021/acs.jcim.4c01574. Epub 2025 Jan 18.
3
Insights into colistin-mediated fluorescence labelling of bacterial LPS.
RSC Adv. 2024 Jan 17;14(4):2770-2777. doi: 10.1039/d3ra07107c. eCollection 2024 Jan 10.
6
Synergistic Membrane Disturbance Improves the Antibacterial Performance of Polymyxin B.
Polymers (Basel). 2022 Oct 14;14(20):4316. doi: 10.3390/polym14204316.
7
Lipid Microenvironment Modulates the Pore-Forming Ability of Polymyxin B.
Antibiotics (Basel). 2022 Oct 20;11(10):1445. doi: 10.3390/antibiotics11101445.
9
Polymyxins induce lipid scrambling and disrupt the homeostasis of Gram-negative bacteria membrane.
Biophys J. 2022 Sep 20;121(18):3486-3498. doi: 10.1016/j.bpj.2022.08.007. Epub 2022 Aug 13.
10
The ArcAB Two-Component System: Function in Metabolism, Redox Control, and Infection.
Microbiol Mol Biol Rev. 2022 Jun 15;86(2):e0011021. doi: 10.1128/mmbr.00110-21. Epub 2022 Apr 20.

本文引用的文献

1
Second-Generation Tryptamine Derivatives Potently Sensitize Colistin Resistant Bacteria to Colistin.
ACS Med Chem Lett. 2019 Apr 17;10(5):828-833. doi: 10.1021/acsmedchemlett.9b00135. eCollection 2019 May 9.
2
Membrane charge and lipid packing determine polymyxin-induced membrane damage.
Commun Biol. 2019 Feb 18;2:67. doi: 10.1038/s42003-019-0297-6. eCollection 2019.
3
Peptide-Lipid Interaction Sites Affect Vesicles' Responses to Antimicrobial Peptides.
Biophys J. 2018 Oct 16;115(8):1518-1529. doi: 10.1016/j.bpj.2018.08.040. Epub 2018 Sep 6.
4
Insights into Membrane Translocation of Protegrin Antimicrobial Peptides by Multistep Molecular Dynamics Simulations.
ACS Omega. 2018 Jun 30;3(6):6056-6065. doi: 10.1021/acsomega.8b00483. Epub 2018 Jun 5.
5
New Class of Adjuvants Enables Lower Dosing of Colistin Against Acinetobacter baumannii.
ACS Infect Dis. 2018 Sep 14;4(9):1368-1376. doi: 10.1021/acsinfecdis.8b00103. Epub 2018 Jun 25.
6
Selective Interaction of Colistin with Lipid Model Membranes.
Biophys J. 2018 Feb 27;114(4):919-928. doi: 10.1016/j.bpj.2017.12.027.
7
Synthesis and Bioactivity Investigation of the Individual Components of Cyclic Lipopeptide Antibiotics.
J Med Chem. 2018 Mar 8;61(5):1845-1857. doi: 10.1021/acs.jmedchem.7b01367. Epub 2018 Feb 15.
8
Excessive aggregation of membrane proteins in the Martini model.
PLoS One. 2017 Nov 13;12(11):e0187936. doi: 10.1371/journal.pone.0187936. eCollection 2017.
10
Through the Lipopolysaccharide Glass: A Potent Antimicrobial Peptide Induces Phase Changes in Membranes.
Biochemistry. 2017 Mar 21;56(11):1672-1679. doi: 10.1021/acs.biochem.6b01063. Epub 2017 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验