Suppr超能文献

利用潜在类别聚类分析和混合逻辑回归模型探讨正面碰撞中的伤害严重程度:以北卡罗来纳州为例的研究

Exploring injury severity in head-on crashes using latent class clustering analysis and mixed logit model: A case study of North Carolina.

机构信息

USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE), Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, EPIC Building, Room 3261, 9201 University City Boulevard, Charlotte, NC, 28223-0001, United States.

出版信息

Accid Anal Prev. 2020 Feb;135:105388. doi: 10.1016/j.aap.2019.105388. Epub 2019 Dec 5.

Abstract

Although only 2 % of crashes are head-on crashes in the United States, they account for over 10 % of all crash-related fatalities. This study aims to investigate the contributing factors that affect the injury severity of head-on crashes and develop appropriate countermeasures. Due to the unobserved heterogeneity inherent in the crash data, a latent class clustering analysis is firstly conducted to segment the head-on crashes into relatively homogeneous clusters. Then, mixed logit models are developed to further explore the unobserved heterogeneity within each cluster. Analyses are performed based on the data collected from the Highway Safety Information System (HSIS) from 2005 to 2013 in North Carolina. The estimated parameters and associated marginal effects are combined to interpret significant variables of the developed models. The proposed method is able to uncover the heterogeneity within the whole dataset and the homogeneous clusters. Results of this research can provide more reliable and insightful information to engineers and policy makers regarding the contributing factors to head-on crashes.

摘要

尽管在美国,只有 2%的碰撞事故是正面碰撞,但它们却占所有碰撞相关死亡事故的 10%以上。本研究旨在探讨影响正面碰撞事故中受伤严重程度的因素,并制定相应的对策。由于碰撞数据中存在未观察到的异质性,首先进行潜在类别聚类分析,将正面碰撞事故分为相对同质的群组。然后,开发混合 Logit 模型进一步探索每个群组内的未观察到的异质性。分析基于 2005 年至 2013 年在北卡罗来纳州公路安全信息系统(HSIS)收集的数据进行。将估计参数和相关边际效应相结合,以解释所开发模型的显著变量。所提出的方法能够揭示整个数据集和同质群组中的异质性。本研究的结果可以为工程师和决策者提供更可靠和有见地的信息,了解导致正面碰撞事故的因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验