文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

土壤中用于可持续土豆种植的合成凝胶结构。

Synthetic gel structures in soils for sustainable potato farming.

机构信息

Lomonosov Moscow State University, Leninsrye gory 1-12, 119991, Moscow, Russia.

Institute of Forest Science of RAS, Sovetskaya 21, 143030, Moscow region, Uspenskoe, Russia.

出版信息

Sci Rep. 2019 Dec 9;9(1):18588. doi: 10.1038/s41598-019-55205-8.


DOI:10.1038/s41598-019-55205-8
PMID:31819145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6901477/
Abstract

Anti-pathogenic protection of potatoes remains one of the most pressing problems of sustainable agronomy and plant protection. For this purpose, we propose to use a new type of synthetic hydrogels filled with amphiphilic recipients (dispersed peat, humates) and modern plant protection products. We assumed that the introduction of swollen gel structures into the rhizosphere of potatoes will allow us: to optimize the water supply and productivity of potatoes; to protect the fertile layer and potato tubers from the main pathogens; to fix modern plant protection products in the rhizosphere, keeping them from leaching and entering the environment. Preliminary laboratory experiments tested the anti-microbial activity of gel structures, as well as their water retention, dispersity and hydraulic conductivity with subsequent computer modeling of the water exchange and root uptake in the system of "soil-gel-potato". Field trials were carried out in humid (European Russia) and arid (Uzbekistan) conditions under the atmospheric precipitation and irrigation on different soils and potato varieties with instrumental monitoring of environment, potato growth and quality. All experimental results confirmed the high efficiency of water-accumulative and plant protective synthetic gel structures. Their usage sufficiently (up to 6-15 t/hct) increases the potato yield with 1.3-2 times water saving, complete retention of agrochemicals in the rizosphere, and its actually total protection against major potato pathogens, including late blight (Phytophthora infestans).

摘要

抗病原保护仍然是可持续农业和植物保护中最紧迫的问题之一。为此,我们建议使用新型合成水凝胶,填充两亲性受体(分散泥炭、腐殖质)和现代植物保护产品。我们假设在马铃薯根际引入膨胀凝胶结构将使我们能够:优化马铃薯的供水和生产力;保护肥沃层和马铃薯块茎免受主要病原体的侵害;固定根际中的现代植物保护产品,防止它们浸出并进入环境。初步实验室实验测试了凝胶结构的抗菌活性,以及它们的保水能力、分散性和水力传导性,随后对“土壤-凝胶-马铃薯”系统中的水分交换和根系吸收进行了计算机建模。在湿润(俄罗斯欧洲部分)和干旱(乌兹别克斯坦)条件下,在大气降水和灌溉下,在不同的土壤和马铃薯品种上进行了田间试验,并进行了环境、马铃薯生长和质量的仪器监测。所有实验结果都证实了高水积累和植物保护合成凝胶结构的高效性。它们的使用充分(高达 6-15 吨/公顷)可以提高马铃薯产量,节水 1.3-2 倍,完全保留根际中的农用化学品,并实际上完全保护马铃薯的主要病原体,包括晚疫病(Phytophthora infestans)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/4c89f35ef73d/41598_2019_55205_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/e41f57339985/41598_2019_55205_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/6e8b58123f49/41598_2019_55205_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/aabade177abb/41598_2019_55205_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/16fc3fb78e2c/41598_2019_55205_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/4c89f35ef73d/41598_2019_55205_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/e41f57339985/41598_2019_55205_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/6e8b58123f49/41598_2019_55205_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/aabade177abb/41598_2019_55205_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/16fc3fb78e2c/41598_2019_55205_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0118/6901477/4c89f35ef73d/41598_2019_55205_Fig5_HTML.jpg

相似文献

[1]
Synthetic gel structures in soils for sustainable potato farming.

Sci Rep. 2019-12-9

[2]
Rice Bran Amendment Suppresses Potato Common Scab by Increasing Antagonistic Bacterial Community Levels in the Rhizosphere.

Phytopathology. 2016-7

[3]
Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains.

Ecotoxicol Environ Saf. 2019-4-13

[4]
Multi-omics analysis reveals the effects of three application modes of plant growth promoting microbes biofertilizer on potato (Solanum tuberosum L.) growth under alkaline loess conditions.

Microbiol Res. 2024-10

[5]
A new strategy for durable control of late blight in potato by a single soil application of an oxathiapiprolin mixture in early season.

PLoS One. 2020-8-21

[6]
Combination of rhizosphere bacteria isolated from resistant potato plants for biocontrol of potato late blight.

Pest Manag Sci. 2022-1

[7]
Translocation of phosphite encourages the protection against Phytophthora infestans in potato: The efficiency and efficacy.

Pestic Biochem Physiol. 2018-9-23

[8]
Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities.

Phytopathology. 2011-1

[9]
Plant host domestication and soil nutrient availability determine positive plant microbial response across the Solanum genus.

J Exp Bot. 2023-3-13

[10]
Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping.

Polymers (Basel). 2022-11-25

引用本文的文献

[1]
Hydrogel Performance in Boosting Plant Resilience to Water Stress-A Review.

Gels. 2025-4-7

[2]
Biodegradability of Gel-Forming Superabsorbents for Soil Conditioning: Kinetic Assessment Based on CO Emissions.

Polymers (Basel). 2023-8-29

[3]
Studies on Agrochemical Controlled Release Behavior of Copolymer Hydrogel with PVA Blends of Natural Polymers and Their Water-Retention Capabilities in Agricultural Soil.

Polymers (Basel). 2023-8-25

[4]
Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping.

Polymers (Basel). 2022-11-25

[5]
Gel-Forming Soil Conditioners of Combined Action: Laboratory Tests for Functionality and Stability.

Polymers (Basel). 2022-11-1

[6]
Degradable Poly(3-hydroxybutyrate)-The Basis of Slow-Release Fungicide Formulations for Suppressing Potato Pathogens.

Polymers (Basel). 2022-9-3

[7]
Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field.

J Adv Res. 2021-11

本文引用的文献

[1]
Biodegradation of Some Organic Materials in Soils and Soil Constructions: Experiments, Modeling and Prevention.

Materials (Basel). 2018-10-2

[2]
Influence of soil properties and soil leaching on the toxicity of ionic silver to plants.

Environ Toxicol Chem. 2015-11

[3]
Inhibition of Phytophthora parasitica and P. capsici by Silver Nanoparticles Synthesized Using Aqueous Extract of Artemisia absinthium.

Phytopathology. 2015-9

[4]
Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor.

Acta Biochim Pol. 2013

[5]
Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test.

Environ Toxicol Chem. 2012-11-21

[6]
Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.

Mycobiology. 2012-3

[7]
Application of silver nanoparticles for the control of colletotrichum species in vitro and pepper anthracnose disease in field.

Mycobiology. 2011-9

[8]
Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza.

Environ Toxicol Chem. 2012-6-29

[9]
Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria.

J Appl Microbiol. 2012-3-28

[10]
Silver enhances the in vitro antifungal activity of the saponin, CAY-1.

Mycoses. 2009-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索