Suppr超能文献

基于对抗正则化自编码器的分子生成模型。

Molecular Generative Model Based on an Adversarially Regularized Autoencoder.

出版信息

J Chem Inf Model. 2020 Jan 27;60(1):29-36. doi: 10.1021/acs.jcim.9b00694. Epub 2019 Dec 24.

Abstract

Deep generative models are attracting great attention as a new promising approach for molecular design. A variety of models reported so far are based on either a variational autoencoder (VAE) or a generative adversarial network (GAN), but they have limitations such as low validity and uniqueness. Here, we propose a new type of model based on an adversarially regularized autoencoder (ARAE). It basically uses latent variables like VAE, but the distribution of the latent variables is estimated by adversarial training like in GAN. The latter is intended to avoid both the insufficiently flexible approximation of posterior distribution in VAE and the difficulty in handling discrete variables in GAN. Our benchmark study showed that ARAE indeed outperformed conventional models in terms of validity, uniqueness, and novelty per generated molecule. We also demonstrated a successful conditional generation of drug-like molecules with ARAE for the control of both cases of single and multiple properties. As a potential real-world application, we could generate epidermal growth factor receptor inhibitors sharing the scaffolds of known active molecules while satisfying drug-like conditions simultaneously.

摘要

深度生成模型作为一种分子设计的新方法,正受到广泛关注。迄今为止报道的各种模型都是基于变分自动编码器(VAE)或生成对抗网络(GAN),但它们存在有效性和独特性低等局限性。在这里,我们提出了一种基于对抗正则化自动编码器(ARAE)的新型模型。它基本上像 VAE 一样使用潜在变量,但通过对抗训练来估计潜在变量的分布,就像在 GAN 中一样。后者旨在避免 VAE 中后验分布的灵活性不足以及 GAN 中处理离散变量的困难。我们的基准研究表明,ARAE 在有效性、独特性和生成分子的新颖性方面确实优于传统模型。我们还通过 ARAE 成功地对药物样分子进行了条件生成,以控制单一和多种特性的情况。作为一种潜在的实际应用,我们可以生成表皮生长因子受体抑制剂,同时共享已知活性分子的支架,并满足药物样条件。

相似文献

1
Molecular Generative Model Based on an Adversarially Regularized Autoencoder.
J Chem Inf Model. 2020 Jan 27;60(1):29-36. doi: 10.1021/acs.jcim.9b00694. Epub 2019 Dec 24.
2
Cross-Adversarial Learning for Molecular Generation in Drug Design.
Front Pharmacol. 2022 Jan 21;12:827606. doi: 10.3389/fphar.2021.827606. eCollection 2021.
4
Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder.
Biomed Opt Express. 2022 Feb 3;13(3):1188-1201. doi: 10.1364/BOE.449796. eCollection 2022 Mar 1.
6
Clustering Analysis via Deep Generative Models With Mixture Models.
IEEE Trans Neural Netw Learn Syst. 2022 Jan;33(1):340-350. doi: 10.1109/TNNLS.2020.3027761. Epub 2022 Jan 5.
7
Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models.
Cell Rep Methods. 2023 Jul 19;3(8):100534. doi: 10.1016/j.crmeth.2023.100534. eCollection 2023 Aug 28.
8
Functional brain network identification and fMRI augmentation using a VAE-GAN framework.
Comput Biol Med. 2023 Oct;165:107395. doi: 10.1016/j.compbiomed.2023.107395. Epub 2023 Sep 1.
9
Organization of a Latent Space structure in VAE/GAN trained by navigation data.
Neural Netw. 2022 Aug;152:234-243. doi: 10.1016/j.neunet.2022.04.012. Epub 2022 Apr 20.
10
Latent adversarial regularized autoencoder for high-dimensional probabilistic time series prediction.
Neural Netw. 2022 Nov;155:383-397. doi: 10.1016/j.neunet.2022.08.025. Epub 2022 Sep 5.

引用本文的文献

2
CardioGenAI: a machine learning-based framework for re-engineering drugs for reduced hERG liability.
J Cheminform. 2025 Mar 5;17(1):30. doi: 10.1186/s13321-025-00976-8.
3
Advances of deep Neural Networks (DNNs) in the development of peptide drugs.
Future Med Chem. 2025 Feb;17(4):485-499. doi: 10.1080/17568919.2025.2463319. Epub 2025 Feb 12.
5
A systematic review of deep learning chemical language models in recent era.
J Cheminform. 2024 Nov 18;16(1):129. doi: 10.1186/s13321-024-00916-y.
6
De novo drug design through gradient-based regularized search in information-theoretically controlled latent space.
J Comput Aided Mol Des. 2024 Aug 27;38(1):32. doi: 10.1007/s10822-024-00571-3.
7
Enhancing molecular design efficiency: Uniting language models and generative networks with genetic algorithms.
Patterns (N Y). 2024 Mar 14;5(4):100947. doi: 10.1016/j.patter.2024.100947. eCollection 2024 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验