Suppr超能文献

基于对抗学习变分自编码器的食管光学相干断层扫描图像合成

Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder.

作者信息

Gan Meng, Wang Cong

机构信息

Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.

Jinan Guoke Medical Technology Development Co., Ltd, Jinan 250102, China.

出版信息

Biomed Opt Express. 2022 Feb 3;13(3):1188-1201. doi: 10.1364/BOE.449796. eCollection 2022 Mar 1.

Abstract

Endoscopic optical coherence tomography (OCT) imaging offers a non-invasive way to detect esophageal lesions on the microscopic scale, which is of clinical potential in the early diagnosis and treatment of esophageal cancers. Recent studies focused on applying deep learning-based methods in esophageal OCT image analysis and achieved promising results, which require a large data size. However, traditional data augmentation techniques generate samples that are highly correlated and sometimes far from reality, which may not lead to a satisfied trained model. In this paper, we proposed an adversarial learned variational autoencoder (AL-VAE) to generate high-quality esophageal OCT samples. The AL-VAE combines the generative adversarial network (GAN) and variational autoencoder (VAE) in a simple yet effective way, which preserves the advantages of VAEs, such as stable training and nice latent manifold, and requires no extra discriminators. Experimental results verified the proposed method achieved better image quality in generating esophageal OCT images when compared with the state-of-the-art image synthesis network, and its potential in improving deep learning model performance was also evaluated by esophagus segmentation.

摘要

内镜光学相干断层扫描(OCT)成像提供了一种在微观尺度上检测食管病变的非侵入性方法,这在食管癌的早期诊断和治疗中具有临床潜力。最近的研究集中在将基于深度学习的方法应用于食管OCT图像分析,并取得了有前景的结果,这需要大量的数据。然而,传统的数据增强技术生成的样本高度相关,有时甚至与现实相差甚远,这可能无法得到一个令人满意的训练模型。在本文中,我们提出了一种对抗学习变分自编码器(AL-VAE)来生成高质量的食管OCT样本。AL-VAE以一种简单而有效的方式将生成对抗网络(GAN)和变分自编码器(VAE)结合起来,它保留了VAE的优点,如训练稳定和潜在流形良好,并且不需要额外的判别器。实验结果表明,与当前最先进的图像合成网络相比,该方法在生成食管OCT图像时具有更好的图像质量,并且通过食管分割评估了其在提高深度学习模型性能方面的潜力。

相似文献

1
Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder.
Biomed Opt Express. 2022 Feb 3;13(3):1188-1201. doi: 10.1364/BOE.449796. eCollection 2022 Mar 1.
2
Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning.
Appl Sci (Basel). 2022 Dec 1;12(23). doi: 10.3390/app122312163. Epub 2022 Nov 28.
3
Molecular Generative Model Based on an Adversarially Regularized Autoencoder.
J Chem Inf Model. 2020 Jan 27;60(1):29-36. doi: 10.1021/acs.jcim.9b00694. Epub 2019 Dec 24.
4
A multimodal dynamical variational autoencoder for audiovisual speech representation learning.
Neural Netw. 2024 Apr;172:106120. doi: 10.1016/j.neunet.2024.106120. Epub 2024 Jan 11.
5
Functional brain network identification and fMRI augmentation using a VAE-GAN framework.
Comput Biol Med. 2023 Oct;165:107395. doi: 10.1016/j.compbiomed.2023.107395. Epub 2023 Sep 1.
6
Clustering Analysis via Deep Generative Models With Mixture Models.
IEEE Trans Neural Netw Learn Syst. 2022 Jan;33(1):340-350. doi: 10.1109/TNNLS.2020.3027761. Epub 2022 Jan 5.
7
Variational Autoencoder for Image-Based Augmentation of Eye-Tracking Data.
J Imaging. 2021 May 3;7(5):83. doi: 10.3390/jimaging7050083.
10

引用本文的文献

1
Machine learning applications for early detection of esophageal cancer: a systematic review.
BMC Med Inform Decis Mak. 2023 Jul 17;23(1):124. doi: 10.1186/s12911-023-02235-y.
2
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review.
J Imaging. 2023 Apr 13;9(4):81. doi: 10.3390/jimaging9040081.
3

本文引用的文献

1
Connectivity-based deep learning approach for segmentation of the epithelium in human esophageal OCT images.
Biomed Opt Express. 2021 Sep 15;12(10):6326-6340. doi: 10.1364/BOE.434775. eCollection 2021 Oct 1.
2
Synthetic polarization-sensitive optical coherence tomography by deep learning.
NPJ Digit Med. 2021 Jul 1;4(1):105. doi: 10.1038/s41746-021-00475-8.
3
Tissue self-attention network for the segmentation of optical coherence tomography images on the esophagus.
Biomed Opt Express. 2021 Apr 7;12(5):2631-2646. doi: 10.1364/BOE.419809. eCollection 2021 May 1.
5
Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
J Neural Eng. 2020 Oct 14;17(5):056021. doi: 10.1088/1741-2552/abb580.
6
Adversarial convolutional network for esophageal tissue segmentation on OCT images.
Biomed Opt Express. 2020 May 18;11(6):3095-3110. doi: 10.1364/BOE.394715. eCollection 2020 Jun 1.
8
Automated Quantification of Hyperreflective Foci in SD-OCT With Diabetic Retinopathy.
IEEE J Biomed Health Inform. 2020 Apr;24(4):1125-1136. doi: 10.1109/JBHI.2019.2929842. Epub 2019 Jul 19.
9
Endoscopic optical coherence tomography: technologies and clinical applications [Invited].
Biomed Opt Express. 2017 Apr 7;8(5):2405-2444. doi: 10.1364/BOE.8.002405. eCollection 2017 May 1.
10
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验