Suppr超能文献

孔径可调氧化石墨烯膜作为选择性分子筛层:实现超高选择性化学电阻传感器。

Pore-Size-Tuned Graphene Oxide Membrane as a Selective Molecular Sieving Layer: Toward Ultraselective Chemiresistors.

机构信息

Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea.

Advanced Nanosensor Research Center, KI Nanocentury , KAIST , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea.

出版信息

Anal Chem. 2020 Jan 7;92(1):957-965. doi: 10.1021/acs.analchem.9b03869. Epub 2019 Dec 26.

Abstract

Conventional graphene oxide (GO)-based gas membranes, having a narrow pore-size range of less than 0.3 nm, exhibit limited gas molecular permeability because of the kinetic diameters of most volatile organic and sulfur compound (VOCs/VSCs) molecules being larger than 0.3 nm. Here, we employ GO nanosheets (NSs) with a tunable pore-size distribution as a molecular sieving layer on two-dimensional (2D) metal oxide NSs-based gas sensors, i.e., PdO-sensitized WO NSs to boost selectivity toward specific gas species. The pore size, surface area, and pore density of GO NSs were simply manipulated by controlling HO concentration. In addition, the pore size-tuned GO NSs were coated on cellulose filtering paper as a free-standing nanoporous membrane. Holey GO membrane showed a highly selective HS permeability characteristic, exhibiting superior cross-selectivity to CHCOCH (0.46 nm), CHOH (0.45 nm), and CH (0.59 nm) with larger kinetic diameters compared with HS (0.36 nm). Such pore-size-tuned GO nanoporous layer is scalable and robust, highlighting a great promise for designing low cost and highly efficient gas-permeable membrane for outstanding selective gas sensing platform.

摘要

传统的氧化石墨烯(GO)基气体膜的孔径范围小于 0.3nm,由于大多数挥发性有机和含硫化合物(VOCs/VSCs)分子的动力学直径大于 0.3nm,因此其气体分子渗透性有限。在这里,我们在二维(2D)金属氧化物 NSs 基气体传感器(即 PdO 敏化 WO NSs)上使用具有可调孔径分布的 GO 纳米片(NSs)作为分子筛层,以提高对特定气体种类的选择性。通过控制 HO 浓度,可以简单地操纵 GO NSs 的孔径、表面积和孔密度。此外,将调谐后的 GO NSs 涂覆在纤维素过滤纸上作为独立的纳米多孔膜。有孔 GO 膜表现出对 HS 具有高选择性的渗透性特征,与具有较大动力学直径的 CHCOCH(0.46nm)、CHOH(0.45nm)和 CH(0.59nm)相比,对 HS(0.36nm)表现出优异的交叉选择性。这种调谐后的 GO 纳米多孔层具有可扩展性和坚固性,为设计用于出色选择性气体传感平台的低成本、高效透气膜提供了巨大的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验