Schlichting Karl-Philipp, Poulikakos Dimos
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):36468-36477. doi: 10.1021/acsami.0c07277. Epub 2020 Jul 28.
Two-dimensional materials are the essential building blocks of breakthrough membrane technologies due to minimal permeation barriers across atomically thin pores. Tunable pore size fabrication combined with independently controlled pore number density is necessary for outstanding performance but remains a challenge. There is a great need for parallel, upscalable methods that can control pore size from sub-nm to >5 nm, a pore size range required for membranes with effective molecular separation. Here we report a dry, facile, and scalable process introducing atomic defects by design, followed by selective etching of graphene edge atoms able to controllably expand the nanopore dimensions from sub-nm to 5 nm. The attainable average pore sizes at 10 m pore density promise applicability to various separation applications. We investigate the gas permeation and separation mechanisms, finding that these membranes display molecular sieving (H/CH separation factor = 9.3; H permeance = 3370 gas permeation units (GPU)) and reveal the presence of interweaved transport phenomena of pore chemistry, surface flow, and gas molecule momentum transfer. We observe the smooth transition from molecular sieving to effusion at unprecedented permeance (H/CH separation factor = 3.7; H permeance = 10 GPU). Our scalable graphene membrane fabrication approach in combination with sub-5 nm pores opens a new route employing 2D membranes to study gas transport and effectively paving the way to industrial applications.
二维材料是突破性膜技术的基本构建单元,因为跨越原子级薄孔隙的渗透屏障极小。可调孔径制造与独立控制的孔数密度相结合对于出色的性能至关重要,但仍然是一个挑战。迫切需要能够将孔径从亚纳米控制到>5纳米的并行、可扩展方法,这是具有有效分子分离功能的膜所需的孔径范围。在此,我们报告了一种干燥、简便且可扩展的工艺,通过设计引入原子缺陷,随后选择性蚀刻石墨烯边缘原子,能够将纳米孔尺寸从亚纳米可控地扩展到5纳米。在10 m孔密度下可实现的平均孔径有望适用于各种分离应用。我们研究了气体渗透和分离机制,发现这些膜表现出分子筛作用(H/CH分离因子 = 9.3;H渗透率 = 3370气体渗透单位(GPU)),并揭示了孔化学、表面流和气体分子动量传递的交织传输现象的存在。我们观察到在前所未有的渗透率下从分子筛作用到泻流的平滑转变(H/CH分离因子 = 3.7;H渗透率 = 10 GPU)。我们可扩展的石墨烯膜制造方法与亚5纳米孔相结合,开辟了一条利用二维膜研究气体传输的新途径,并有效地为工业应用铺平了道路。