Suppr超能文献

everdockBAI:基于机器学习的蛋白质-蛋白质复合物结构选择。

evERdock BAI: Machine-learning-guided selection of protein-protein complex structure.

机构信息

RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.

School of Life Sciences and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

出版信息

J Chem Phys. 2019 Dec 7;151(21):215104. doi: 10.1063/1.5129551.

Abstract

Computational techniques for accurate and efficient prediction of protein-protein complex structures are widely used for elucidating protein-protein interactions, which play important roles in biological systems. Recently, it has been reported that selecting a structure similar to the native structure among generated structure candidates (decoys) is possible by calculating binding free energies of the decoys based on all-atom molecular dynamics (MD) simulations with explicit solvent and the solution theory in the energy representation, which is called evERdock. A recent version of evERdock achieves a higher-accuracy decoy selection by introducing MD relaxation and multiple MD simulations/energy calculations; however, huge computational cost is required. In this paper, we propose an efficient decoy selection method using evERdock and the best arm identification (BAI) framework, which is one of the techniques of reinforcement learning. The BAI framework realizes an efficient selection by suppressing calculations for nonpromising decoys and preferentially calculating for the promising ones. We evaluate the performance of the proposed method for decoy selection problems of three protein-protein complex systems. Their results show that computational costs are successfully reduced by a factor of 4.05 (in the best case) compared to a standard decoy selection approach without sacrificing accuracy.

摘要

用于准确高效地预测蛋白质-蛋白质复合物结构的计算技术广泛用于阐明蛋白质-蛋白质相互作用,这些相互作用在生物系统中起着重要作用。最近有报道称,可以通过基于具有显式溶剂的全原子分子动力学 (MD) 模拟和能量表示中的溶液理论来计算诱饵的结合自由能,从而从生成的结构候选物(诱饵)中选择类似于天然结构的结构,这称为 evERdock。evERdock 的最新版本通过引入 MD 弛豫和多个 MD 模拟/能量计算来实现更高精度的诱饵选择;但是,需要巨大的计算成本。在本文中,我们提出了一种使用 evERdock 和最佳臂识别 (BAI) 框架的高效诱饵选择方法,BAI 框架是强化学习技术之一。该框架通过抑制对非有希望的诱饵的计算并优先对有希望的诱饵进行计算,实现了高效的选择。我们评估了该方法在三个蛋白质-蛋白质复合物系统的诱饵选择问题中的性能。结果表明,与不牺牲准确性的标准诱饵选择方法相比,计算成本成功降低了 4.05 倍(在最佳情况下)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验