Suppr超能文献

机器学习加速了基于 MD 的配体与蛋白质之间结合构象预测。

Machine learning accelerates MD-based binding pose prediction between ligands and proteins.

机构信息

Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan.

Foundation for Biomedical Research and Innovation, Hyogo 650-0047, Japan.

出版信息

Bioinformatics. 2018 Mar 1;34(5):770-778. doi: 10.1093/bioinformatics/btx638.

Abstract

MOTIVATION

Fast and accurate prediction of protein-ligand binding structures is indispensable for structure-based drug design and accurate estimation of binding free energy of drug candidate molecules in drug discovery. Recently, accurate pose prediction methods based on short Molecular Dynamics (MD) simulations, such as MM-PBSA and MM-GBSA, among generated docking poses have been used. Since molecular structures obtained from MD simulation depend on the initial condition, taking the average over different initial conditions leads to better accuracy. Prediction accuracy of protein-ligand binding poses can be improved with multiple runs at different initial velocity.

RESULTS

This paper shows that a machine learning method, called Best Arm Identification, can optimally control the number of MD runs for each binding pose. It allows us to identify a correct binding pose with a minimum number of total runs. Our experiment using three proteins and eight inhibitors showed that the computational cost can be reduced substantially without sacrificing accuracy. This method can be applied for controlling all kinds of molecular simulations to obtain best results under restricted computational resources.

AVAILABILITY AND IMPLEMENTATION

Code and data are available on GitHub at https://github.com/tsudalab/bpbi.

CONTACT

terayama@cbms.k.u-tokyo.ac.jp or tsuda@k.u-tokyo.ac.jp.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

快速准确地预测蛋白质-配体结合结构对于基于结构的药物设计和准确估计药物发现中候选药物分子的结合自由能是不可或缺的。最近,已经使用了基于短分子动力学 (MD) 模拟的准确姿势预测方法,例如 MM-PBSA 和 MM-GBSA,这些方法是在生成的对接姿势中进行的。由于从 MD 模拟中获得的分子结构取决于初始条件,因此对不同初始条件进行平均可以提高准确性。通过在不同初始速度下进行多次运行,可以提高蛋白质-配体结合姿势的预测准确性。

结果

本文表明,一种称为最佳臂识别的机器学习方法可以最优地控制每个结合姿势的 MD 运行次数。它允许我们用最少的总运行次数来识别正确的结合姿势。我们使用三个蛋白质和八个抑制剂进行的实验表明,可以在不牺牲准确性的情况下大大降低计算成本。该方法可应用于控制各种分子模拟,以在有限的计算资源下获得最佳结果。

可用性和实现

代码和数据可在 GitHub 上获得,网址为 https://github.com/tsudalab/bpbi。

联系方式

terayama@cbms.k.u-tokyo.ac.jptsuda@k.u-tokyo.ac.jp

补充信息

补充数据可在生物信息学在线获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验