Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan.
Foundation for Biomedical Research and Innovation, Hyogo 650-0047, Japan.
Bioinformatics. 2018 Mar 1;34(5):770-778. doi: 10.1093/bioinformatics/btx638.
Fast and accurate prediction of protein-ligand binding structures is indispensable for structure-based drug design and accurate estimation of binding free energy of drug candidate molecules in drug discovery. Recently, accurate pose prediction methods based on short Molecular Dynamics (MD) simulations, such as MM-PBSA and MM-GBSA, among generated docking poses have been used. Since molecular structures obtained from MD simulation depend on the initial condition, taking the average over different initial conditions leads to better accuracy. Prediction accuracy of protein-ligand binding poses can be improved with multiple runs at different initial velocity.
This paper shows that a machine learning method, called Best Arm Identification, can optimally control the number of MD runs for each binding pose. It allows us to identify a correct binding pose with a minimum number of total runs. Our experiment using three proteins and eight inhibitors showed that the computational cost can be reduced substantially without sacrificing accuracy. This method can be applied for controlling all kinds of molecular simulations to obtain best results under restricted computational resources.
Code and data are available on GitHub at https://github.com/tsudalab/bpbi.
terayama@cbms.k.u-tokyo.ac.jp or tsuda@k.u-tokyo.ac.jp.
Supplementary data are available at Bioinformatics online.
快速准确地预测蛋白质-配体结合结构对于基于结构的药物设计和准确估计药物发现中候选药物分子的结合自由能是不可或缺的。最近,已经使用了基于短分子动力学 (MD) 模拟的准确姿势预测方法,例如 MM-PBSA 和 MM-GBSA,这些方法是在生成的对接姿势中进行的。由于从 MD 模拟中获得的分子结构取决于初始条件,因此对不同初始条件进行平均可以提高准确性。通过在不同初始速度下进行多次运行,可以提高蛋白质-配体结合姿势的预测准确性。
本文表明,一种称为最佳臂识别的机器学习方法可以最优地控制每个结合姿势的 MD 运行次数。它允许我们用最少的总运行次数来识别正确的结合姿势。我们使用三个蛋白质和八个抑制剂进行的实验表明,可以在不牺牲准确性的情况下大大降低计算成本。该方法可应用于控制各种分子模拟,以在有限的计算资源下获得最佳结果。
代码和数据可在 GitHub 上获得,网址为 https://github.com/tsudalab/bpbi。
terayama@cbms.k.u-tokyo.ac.jp 或 tsuda@k.u-tokyo.ac.jp。
补充数据可在生物信息学在线获得。