Suppr超能文献

阻止半胱天冬酶切割 RIPK1 的突变会导致自身炎症性疾病。

Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease.

机构信息

The Walter and Eliza Hall Institute, Parkville, Victoria, Australia.

Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.

出版信息

Nature. 2020 Jan;577(7788):103-108. doi: 10.1038/s41586-019-1828-5. Epub 2019 Dec 11.

Abstract

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1 mutant mouse strain. Whereas Ripk1 mice died postnatally from systemic inflammation, Ripk1 mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1 embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1 and Ripk1 cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1 mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.

摘要

RIPK1 是先天免疫信号通路的关键调节因子。为了确保最佳的炎症反应,RIPK1 通过多种翻译后修饰(如泛素化和磷酸化)以及 caspase-8 介导的切割来进行调节。尽管人们认为这种切割事件会抑制 RIPK3 的激活和坏死性凋亡,但该切割事件的生理相关性尚不清楚。在这里,我们表明杂合错义突变 D324N、D324H 和 D324Y 可防止人类 RIPK1 的 caspase 切割,从而导致早发性周期性发热综合征和严重间歇性淋巴结病——我们称之为“切割抗性 RIPK1 诱导的自身炎症综合征”。为了定义这种疾病的机制,我们生成了一种切割抗性 Ripk1 突变小鼠品系。尽管 Ripk1 小鼠在出生后死于全身炎症,但 Ripk1 小鼠在胚胎期死亡。Casp8 和 Ripk3 的联合缺失完全阻止了胚胎致死性,但 Ripk3 或 Mlkl 的缺失则不能。RIPK1 激酶活性的丧失也阻止了 Ripk1 的胚胎致死性,尽管由于多器官炎症,小鼠在断奶前以 RIPK3 依赖性方式死亡。一致地,Ripk1 和 Ripk1 细胞对 RIPK3 依赖性 TNF 诱导的细胞凋亡和坏死性凋亡更为敏感。杂合 Ripk1 小鼠具有活力且大体正常,但在体内对炎症刺激的反应过度。我们的结果表明,caspase 介导的 RIPK1 切割在胚胎发育过程中非常重要,并表明 RIPK1 的 caspase 切割不仅抑制坏死性凋亡,而且在整个生命周期中维持炎症内稳态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c646/6930849/b1ec8f339f55/EMS84659-f005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验