Suppr超能文献

处理蛋白质相互作用网络中的噪声。

Handling Noise in Protein Interaction Networks.

机构信息

Department of Electronics, Telecommunications and Informatics, Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal.

Department of Informatics and Systems Engineering, Coimbra Institute of Engineering, Polytechnic Institute of Coimbra, 3030-199 Coimbra, Portugal.

出版信息

Biomed Res Int. 2019 Oct 30;2019:8984248. doi: 10.1155/2019/8984248. eCollection 2019.

Abstract

Protein-protein interactions (PPIs) can be conveniently represented as networks, allowing the use of graph theory for their study. Network topology studies may reveal patterns associated with specific organisms. Here, we propose a new methodology to denoise PPI networks and predict missing links solely based on the network topology, the organization measurement (OM) method. The OM methodology was applied in the denoising of the PPI networks of two datasets (Yeast and CS2007) and one dataset (Human). To evaluate the denoising capabilities of the OM methodology, two strategies were applied. The first strategy compared its application in random networks and in the reference set networks, while the second strategy perturbed the networks with the gradual random addition and removal of edges. The application of the OM methodology to the Yeast and Human reference sets achieved an AUC of 0.95 and 0.87, in Yeast and Human networks, respectively. The random removal of 80% of the Yeast and Human reference set interactions resulted in an AUC of 0.71 and 0.62, whereas the random addition of 80% interactions resulted in an AUC of 0.75 and 0.72, respectively. Applying the OM methodology to the CS2007 dataset yields an AUC of 0.99. We also perturbed the network of the CS2007 dataset by randomly inserting and removing edges in the same proportions previously described. The false positives identified and removed from the network varied from 97%, when inserting 20% more edges, to 89%, when 80% more edges were inserted. The true positives identified and inserted in the network varied from 95%, when removing 20% of the edges, to 40%, after the random deletion of 80% edges. The OM methodology is sensitive to the topological structure of the biological networks. The obtained results suggest that the present approach can efficiently be used to denoise PPI networks.

摘要

蛋白质-蛋白质相互作用(PPIs)可以方便地表示为网络,从而可以使用图论对其进行研究。网络拓扑结构研究可能揭示与特定生物体相关的模式。在这里,我们提出了一种新的方法,仅基于网络拓扑结构和组织度量(OM)方法来对蛋白质-蛋白质相互作用网络进行去噪和预测缺失的连接。OM 方法应用于两个数据集(酵母和 CS2007)和一个数据集(人类)的蛋白质-蛋白质相互作用网络的去噪。为了评估 OM 方法的去噪能力,应用了两种策略。第一种策略比较了它在随机网络和参考集网络中的应用,而第二种策略则通过逐渐随机添加和删除边缘来干扰网络。OM 方法在酵母和人类参考集上的应用分别在酵母和人类网络中实现了 AUC 为 0.95 和 0.87。随机去除酵母和人类参考集 80%的相互作用导致 AUC 分别为 0.71 和 0.62,而随机添加 80%的相互作用导致 AUC 分别为 0.75 和 0.72。将 OM 方法应用于 CS2007 数据集产生 AUC 为 0.99。我们还以先前描述的相同比例随机插入和删除边缘的方式干扰了 CS2007 数据集的网络。从网络中识别并删除的假阳性数量从插入 20%更多边缘时的 97%,到插入 80%更多边缘时的 89%。从网络中识别并插入的真阳性数量从删除 20%的边缘时的 95%,到随机删除 80%的边缘时的 40%。OM 方法对生物网络的拓扑结构敏感。获得的结果表明,该方法可以有效地用于对蛋白质-蛋白质相互作用网络进行去噪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90aa/6885184/fb00faa57145/BMRI2019-8984248.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验