Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
Structure. 2020 Feb 4;28(2):196-205.e3. doi: 10.1016/j.str.2019.11.012. Epub 2019 Dec 9.
Understanding how changes in amino acid sequence alter protein dynamics and allosteric signaling would illuminate strategies for protein design. To gain insight into this process, we have combined molecular dynamics simulations with ancestral sequence reconstruction to explore conformational dynamics in two ancient steroid receptors (SRs) to determine how allosteric signaling pathways were altered over evolution to generate hormone specificity. In a broad panel of aromatized and non-aromatized hormones, we investigate inter-residue contacts that facilitate allosteric signaling. This work reveals interhelical interactions that act as ligand sensors and explain the structural and dynamical basis for ligand discrimination in SRs. These sensors are part of a conserved SR allosteric network and persist over long simulation time scales, indicating that evolutionary substitutions rewire ancient SR networks to achieve functional evolution. This powerful combination of computation, ancestral reconstruction, and biochemistry may illuminate allosteric mechanisms and functional evolution in other protein families.
了解氨基酸序列的变化如何改变蛋白质动力学和别构信号将阐明蛋白质设计的策略。为了深入了解这一过程,我们结合分子动力学模拟和祖先序列重建,探索了两种古老的甾体受体(SR)的构象动力学,以确定别构信号通路在进化过程中是如何改变的,从而产生激素特异性。在广泛的芳香化和非芳香化激素中,我们研究了促进别构信号的残基间相互作用。这项工作揭示了作为配体传感器的螺旋间相互作用,并解释了 SR 中配体识别的结构和动力学基础。这些传感器是保守的 SR 别构网络的一部分,在长时间的模拟时间尺度上保持稳定,表明进化替代重新连接了古老的 SR 网络,以实现功能进化。这种计算、祖先重建和生物化学的强大组合可能会阐明其他蛋白质家族的别构机制和功能进化。