School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Straße 61, Dresden, 01187, Germany.
Sci Rep. 2019 Dec 12;9(1):18999. doi: 10.1038/s41598-019-55358-6.
Microalgal photosynthesis is a promising solar energy conversion process to produce high concentration biomass, which can be utilized in the various fields including bioenergy, food resources, and medicine. In this research, we study the optical design rule for microalgal cultivation systems, to efficiently utilize the solar energy and improve the photosynthesis efficiency. First, an organic luminescent dye of 3,6-Bis(4'-(diphenylamino)-1,1'-biphenyl-4-yl)-2,5-dihexyl-2,5-dihydropyrrolo3,4-c pyrrole -1,4-dione (D1) was coated on a photobioreactor (PBR) for microalgal cultivation. Unlike previous reports, there was no enhancement in the biomass productivities under artificial solar illuminations of 0.2 and 0.6 sun. We analyze the limitations and future design principles of the PBRs using photoluminescence under strong illumination. Second, as a multiple-bandgaps-scheme to maximize the conversion efficiency of solar energy, we propose a dual-energy generator that combines microalgal cultivation with spectrally selective photovoltaic cells (PVs). In the proposed system, the blue and green photons, of which high energy is not efficiently utilized in photosynthesis, are absorbed by a large-bandgap PV, generating electricity with a high open-circuit voltage (V) in reward for narrowing the absorption spectrum. Then, the unabsorbed red photons are guided into PBR and utilized for photosynthesis with high efficiency. Under an illumination of 7.2 kWh m d, we experimentally verified that our dual-energy generator with C-based PV can simultaneously produce 20.3 g m d of biomass and 220 Wh m d of electricity by utilizing multiple bandgaps in a single system.
微藻光合作用是一种很有前途的太阳能转换过程,可以生产高浓度的生物质,可应用于生物能源、食品资源和医药等各个领域。在这项研究中,我们研究了微藻培养系统的光学设计规则,以有效地利用太阳能并提高光合作用效率。首先,我们将一种有机发光染料 3,6-双(4'-(二苯基氨基)-1,1'-联苯-4-基)-2,5-二己基-2,5-二氢吡咯并[3,4-c]吡咯-1,4-二酮(D1)涂覆在光生物反应器(PBR)上用于微藻培养。与之前的报道不同,在 0.2 和 0.6 太阳光的人工光照下,生物量生产力没有提高。我们使用强光照下的光致发光分析了 PBR 的局限性和未来的设计原则。其次,作为一种最大化太阳能转换效率的多带隙方案,我们提出了一种将微藻培养与光谱选择性光伏电池(PV)相结合的双能发电机。在提出的系统中,高能量的蓝绿光子在光合作用中不能有效利用,被大带隙 PV 吸收,产生高开路电压(V)的电能,以奖励缩小吸收光谱。然后,未被吸收的红光被引导到 PBR 中,并以高效率用于光合作用。在 7.2 kWh m d 的光照下,我们通过实验验证了我们的基于 C 的 PV 的双能发电机可以通过在单个系统中利用多个带隙同时产生 20.3 g m d 的生物质和 220 Wh m d 的电能。