文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

二维纳米材料的功能化杂交

Functionalized Hybridization of 2D Nanomaterials.

作者信息

Guan Guijian, Han Ming-Yong

机构信息

Institute of Molecular Plus Tianjin University Tianjin 300072 P. R. China.

Institute of Materials Research and Engineering ASTAR 2 Fusionopolis Way Singapore 138634 Singapore.

出版信息

Adv Sci (Weinh). 2019 Oct 14;6(23):1901837. doi: 10.1002/advs.201901837. eCollection 2019 Dec.


DOI:10.1002/advs.201901837
PMID:31832321
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6891915/
Abstract

The discovery of graphene and subsequent verification of its unique properties have aroused great research interest to exploit diversified graphene-analogous 2D nanomaterials with fascinating physicochemical properties. Through either physical or chemical doping, linkage, adsorption, and hybridization with other functional species into or onto them, more novel/improved properties are readily created to extend/expand their functionalities and further achieve great performance. Here, various functionalized hybridizations by using different types of 2D nanomaterials are overviewed systematically with emphasis on their interaction formats (e.g., in-plane or inter plane), synergistic properties, and enhanced applications. As the most intensely investigated 2D materials in the post-graphene era, transition metal dichalcogenide nanosheets are comprehensively investigated through their element doping, physical/chemical functionalization, and nanohybridization. Meanwhile, representative hybrids with more types of nanosheets are also presented to understand their unique surface structures and address the special requirements for better applications. More excitingly, the van der Waals heterostructures of diverse 2D materials are specifically summarized to add more functionality or flexibility into 2D material systems. Finally, the current research status and faced challenges are discussed properly and several perspectives are elaborately given to accelerate the rational fabrication of varied and talented 2D hybrids.

摘要

石墨烯的发现及其独特性质的后续验证引发了人们极大的研究兴趣,以开发具有迷人物理化学性质的多种类石墨烯二维纳米材料。通过物理或化学掺杂、与其他功能物种的连接、吸附以及杂交等方式,将这些功能引入到二维纳米材料中或其表面,能够轻松创造出更多新颖/改进的性质,从而扩展其功能并进一步实现卓越性能。在此,系统综述了使用不同类型二维纳米材料进行的各种功能化杂交,重点介绍了它们的相互作用形式(如面内或面间)、协同性质以及增强的应用。作为后石墨烯时代研究最为深入的二维材料,过渡金属二硫属化物纳米片通过元素掺杂、物理/化学功能化以及纳米杂交等方式得到了全面研究。同时,还展示了具有更多类型纳米片的代表性杂化物,以了解它们独特的表面结构并满足更好应用的特殊要求。更令人兴奋的是,特别总结了多种二维材料的范德华异质结构,为二维材料系统增添更多功能或灵活性。最后,对当前的研究现状和面临的挑战进行了恰当讨论,并精心给出了几个观点,以加速合理制备各种多样且有潜力的二维杂化物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/cbe021d130d4/ADVS-6-1901837-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/2b337ef058d0/ADVS-6-1901837-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/9707e7a4bca8/ADVS-6-1901837-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/a894b81f36f1/ADVS-6-1901837-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/32e040ebfa72/ADVS-6-1901837-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/f30600bff95a/ADVS-6-1901837-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/1d9de7d286bd/ADVS-6-1901837-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/a13b9f3098e8/ADVS-6-1901837-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/1da5ee56423e/ADVS-6-1901837-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/27c782576a33/ADVS-6-1901837-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/963c6f34c55c/ADVS-6-1901837-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/075f6bed8a55/ADVS-6-1901837-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/df77a59c8a69/ADVS-6-1901837-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/c8a04affa681/ADVS-6-1901837-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/81a3699ea455/ADVS-6-1901837-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/11b49d31bc71/ADVS-6-1901837-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/71d33a849e86/ADVS-6-1901837-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/7e5392fa9d88/ADVS-6-1901837-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/36b251939548/ADVS-6-1901837-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/084295c35b30/ADVS-6-1901837-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/cbe021d130d4/ADVS-6-1901837-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/2b337ef058d0/ADVS-6-1901837-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/9707e7a4bca8/ADVS-6-1901837-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/a894b81f36f1/ADVS-6-1901837-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/32e040ebfa72/ADVS-6-1901837-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/f30600bff95a/ADVS-6-1901837-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/1d9de7d286bd/ADVS-6-1901837-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/a13b9f3098e8/ADVS-6-1901837-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/1da5ee56423e/ADVS-6-1901837-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/27c782576a33/ADVS-6-1901837-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/963c6f34c55c/ADVS-6-1901837-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/075f6bed8a55/ADVS-6-1901837-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/df77a59c8a69/ADVS-6-1901837-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/c8a04affa681/ADVS-6-1901837-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/81a3699ea455/ADVS-6-1901837-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/11b49d31bc71/ADVS-6-1901837-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/71d33a849e86/ADVS-6-1901837-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/7e5392fa9d88/ADVS-6-1901837-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/36b251939548/ADVS-6-1901837-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/084295c35b30/ADVS-6-1901837-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a4/6891915/cbe021d130d4/ADVS-6-1901837-g020.jpg

相似文献

[1]
Functionalized Hybridization of 2D Nanomaterials.

Adv Sci (Weinh). 2019-10-14

[2]
Two-Dimensional Nanomaterial-Templated Composites.

Acc Chem Res. 2022-12-20

[3]
Hybrids of Fullerenes and 2D Nanomaterials.

Adv Sci (Weinh). 2018-9-2

[4]
Molecular Functionalization of Two-Dimensional MoS Nanosheets.

Chemistry. 2018-11-19

[5]
Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy.

J Control Release. 2019-2-13

[6]
Hybridized 2D Nanomaterials Toward Highly Efficient Photocatalysis for Degrading Pollutants: Current Status and Future Perspectives.

Small. 2020-5

[7]
Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.

Acc Chem Res. 2014-12-9

[8]
Interface Engineering in 2D/2D Heterogeneous Photocatalysts.

Small. 2023-2

[9]
Recent Advances in Two-Dimensional Materials beyond Graphene.

ACS Nano. 2015-11-24

[10]
Recent progress of two-dimensional heterostructures for thermoelectric applications.

J Phys Condens Matter. 2022-12-15

引用本文的文献

[1]
Two-dimensional nanomaterials for bone disease therapy: multifunctional platforms for regeneration, anti-infection and tumor ablation.

J Nanobiotechnology. 2025-8-14

[2]
The Biomodification and Biomimetic Synthesis of 2D Nanomaterial-Based Nanohybrids for Biosensor Applications: A Review.

Biosensors (Basel). 2025-5-20

[3]
Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications.

Nanomicro Lett. 2024-1-23

[4]
The Accumulation of Electrical Energy Due to the Quantum-Dimensional Effects and Quantum Amplification of Sensor Sensitivity in a Nanoporous SiO Matrix Filled with Synthetic Fulvic Acid.

Sensors (Basel). 2023-4-21

[5]
Potential and Progress of 2D Materials in Photomedicine for Cancer Treatment.

ACS Appl Bio Mater. 2023-2-20

[6]
A hierarchical porous P-doped carbon electrode through hydrothermal carbonization of pomelo valves for high-performance supercapacitors.

Nanoscale Adv. 2020-6-22

[7]
Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications.

Nanoscale Adv. 2020-7-16

[8]
One-pot bottom-up synthesis of a 2D graphene derivative: application in biomolecular recognition and nanozyme activity.

Nanoscale Adv. 2021-7-21

[9]
High surface area nitrogen-functionalized Ni nanozymes for efficient peroxidase-like catalytic activity.

PLoS One. 2021

[10]
MoS/PPy Nanocomposite as a Transducer for Electrochemical Aptasensor of Ampicillin in River Water.

Biosensors (Basel). 2021-9-1

本文引用的文献

[1]
BSA-exfoliated WSe nanosheets as a photoregulated carrier for synergistic photodynamic/photothermal therapy.

J Mater Chem B. 2017-1-14

[2]
Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime.

Light Sci Appl. 2019-1-16

[3]
Hybrids of Fullerenes and 2D Nanomaterials.

Adv Sci (Weinh). 2018-9-2

[4]
Glass-Fabric Reinforced Ag Nanowire/Siloxane Composite Heater Substrate: Sub-10 nm Metal@Metal Oxide Nanosheet for Sensitive Flexible Sensing Platform.

Small. 2018-11

[5]
Atomic-Thick TiO(B) Nanosheets Decorated with Ultrafine CoO Nanocrystals As a Highly Efficient Catalyst for Lithium-Oxygen Battery.

ACS Appl Mater Interfaces. 2018-11-16

[6]
Multiscale Structural Engineering of Ni-Doped CoO Nanosheets for Zinc-Air Batteries with High Power Density.

Adv Mater. 2018-10-4

[7]
High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH) Hybrid Nanosheet Films.

ACS Appl Mater Interfaces. 2018-11-7

[8]
Visible- and NIR-Light Responsive Black-Phosphorus-Based Nanostructures in Solar Fuel Production and Environmental Remediation.

Adv Mater. 2018-10-15

[9]
Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C molecules.

Nat Commun. 2018-10-9

[10]
Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing.

ACS Sens. 2018-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索