通过可穿戴设备数据分析洞察人类健康

Windows Into Human Health Through Wearables Data Analytics.

作者信息

Witt Daniel, Kellogg Ryan, Snyder Michael, Dunn Jessilyn

机构信息

Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, USA.

出版信息

Curr Opin Biomed Eng. 2019 Mar;9:28-46. doi: 10.1016/j.cobme.2019.01.001. Epub 2019 Jan 28.

Abstract

BACKGROUND

Wearable sensors (wearables) have been commonly integrated into a wide variety of commercial products and are increasingly being used to collect and process raw physiological parameters into salient digital health information. The data collected by wearables are currently being investigated across a broad set of clinical domains and patient populations. There is significant research occurring in the domain of algorithm development, with the aim of translating raw sensor data into fitness- or health-related outcomes of interest for users, patients, and health care providers.

OBJECTIVES

The aim of this review is to highlight a selected group of fitness- and health-related indicators from wearables data and to describe several algorithmic approaches used to generate these higher order indicators.

METHODS

A systematic search of the Pubmed database was performed with the following search terms (number of records in parentheses): Fitbit algorithm (18), Apple Watch algorithm (3), Garmin algorithm (5), Microsoft Band algorithm (8), Samsung Gear algorithm (2), Xiaomi MiBand algorithm (1), Huawei Band (Watch) algorithm (2), photoplethysmography algorithm (465), accelerometry algorithm (966), ECG algorithm (8287), continuous glucose monitor algorithm (343). The search terms chosen for this review are focused on algorithms for wearable devices that dominated the commercial wearables market between 2014-2017 and that were highly represented in the biomedical literature. A second set of search terms included categories of algorithms for fitness-related and health-related indicators that are commonly used in wearable devices (e.g. accelerometry, PPG, ECG). These papers covered the following domain areas: fitness; exercise; movement; physical activity; step count; walking; running; swimming; energy expenditure; atrial fibrillation; arrhythmia; cardiovascular; autonomic nervous system; neuropathy; heart rate variability; fall detection; trauma; behavior change; diet; eating; stress detection; serum glucose monitoring; continuous glucose monitoring; diabetes mellitus type 1; diabetes mellitus type 2. All studies uncovered through this search on commercially available device algorithms and pivotal studies on sensor algorithm development were summarized, and a summary table was constructed using references generated by the literature review as described (Table 1).

CONCLUSIONS

Wearable health technologies aim to collect and process raw physiological or environmental parameters into salient digital health information. Much of the current and future utility of wearables lies in the signal processing steps and algorithms used to analyze large volumes of data. Continued algorithmic development and advances in machine learning techniques will further increase analytic capabilities. In the context of these advances, our review aims to highlight a range of advances in fitness- and other health-related indicators provided by current wearable technologies.

摘要

背景

可穿戴传感器已普遍集成到各种商业产品中,并越来越多地用于收集原始生理参数并将其处理为显著的数字健康信息。目前,可穿戴设备收集的数据正在广泛的临床领域和患者群体中进行研究。算法开发领域正在进行大量研究,目的是将原始传感器数据转化为用户、患者和医疗保健提供者感兴趣的与健身或健康相关的结果。

目的

本综述的目的是突出可穿戴设备数据中一组选定的与健身和健康相关的指标,并描述用于生成这些高阶指标的几种算法方法。

方法

使用以下搜索词对PubMed数据库进行系统搜索(括号内为记录数量):Fitbit算法(18条)、Apple Watch算法(3条)、Garmin算法(5条)、Microsoft Band算法(8条)、三星Gear算法(2条)、小米手环算法(1条)、华为手环(手表)算法(2条)、光电容积脉搏波描记术算法(465条)、加速度测量算法(966条)、心电图算法(8287条)、连续血糖监测算法(343条)。本综述选择的搜索词聚焦于2014年至2017年间主导商业可穿戴设备市场且在生物医学文献中大量出现的可穿戴设备算法。第二组搜索词包括可穿戴设备中常用的与健身相关和与健康相关指标的算法类别(如加速度测量、光电容积脉搏波描记术、心电图)。这些论文涵盖以下领域:健身;运动;活动;身体活动;步数计数;步行;跑步;游泳;能量消耗;心房颤动;心律失常;心血管;自主神经系统;神经病变;心率变异性;跌倒检测;创伤;行为改变;饮食;进食;压力检测;血清葡萄糖监测;连续血糖监测;1型糖尿病;2型糖尿病。总结了通过此次对商用设备算法的搜索发现的所有研究以及关于传感器算法开发的关键研究,并使用文献综述生成的参考文献构建了一个汇总表(表1)。

结论

可穿戴健康技术旨在将原始生理或环境参数收集并处理为显著的数字健康信息。可穿戴设备当前和未来的大部分效用在于用于分析大量数据的信号处理步骤和算法。持续的算法开发和机器学习技术的进步将进一步提高分析能力。在这些进步的背景下,我们的综述旨在突出当前可穿戴技术在健身和其他与健康相关指标方面的一系列进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索