Suppr超能文献

通过联邦学习增强医疗保健数据隐私和互操作性。

Enhancing healthcare data privacy and interoperability with federated learning.

作者信息

Akhmetov Adil, Latif Zohaib, Tyler Benjamin, Yazici Adnan

机构信息

Department of Computer Science, Nazarbayev University, Astana, Kazakhstan.

出版信息

PeerJ Comput Sci. 2025 May 8;11:e2870. doi: 10.7717/peerj-cs.2870. eCollection 2025.

Abstract

This article explores the application of federated learning (FL) with the Fast Healthcare Interoperability Resources (FHIR) protocol to address the underutilization of the huge volumes of healthcare data generated by the digital health revolution, especially those from wearable sensors, due to privacy concerns and interoperability challenges. Despite advances in electronic medical records, mobile health applications, and wearable sensors, current digital health cannot fully exploit these data due to the lack of data analysis and exchange between heterogeneous systems. To address this gap, we present a novel converged platform combining FL and FHIR, which enables collaborative model training that preserves the privacy of wearable sensor data while promoting data standardization and interoperability. Unlike traditional centralized learning (CL) solutions that require data centralization, our platform uses local model learning, which naturally improves data privacy. Our empirical evaluation demonstrates that federated learning models perform as well as, or even numerically better than, centralized learning models in terms of classification accuracy, while also performing equally well in regression, as indicated by metrics such as accuracy, area under the curve (AUC), recall, and precision, among others, for classification, and mean absolute error (MAE), mean squared error (MSE), and root mean square error (RMSE) for regression. In addition, we developed an intuitive AutoML-powered web application that is FL and CL compatible to illustrate the feasibility of our platform for predictive modeling of physical activity and energy expenditure, while complying with FHIR data reporting standards. These results highlight the immense potential of our FHIR-integrated federated learning platform as a practical framework for future interoperable and privacy-preserving digital health ecosystems to optimize the use of connected health data.

摘要

本文探讨了联合学习(FL)与快速医疗保健互操作性资源(FHIR)协议的应用,以解决由于隐私问题和互操作性挑战而导致的数字健康革命所产生的大量医疗数据未得到充分利用的问题,特别是来自可穿戴传感器的数据。尽管电子病历、移动健康应用和可穿戴传感器取得了进展,但由于异构系统之间缺乏数据分析和交换,当前的数字健康无法充分利用这些数据。为了弥补这一差距,我们提出了一个结合FL和FHIR的新型融合平台,该平台能够进行协作式模型训练,在促进数据标准化和互操作性的同时保护可穿戴传感器数据的隐私。与需要数据集中化的传统集中式学习(CL)解决方案不同,我们的平台使用本地模型学习,这自然会提高数据隐私性。我们的实证评估表明,联合学习模型在分类准确性方面与集中式学习模型表现相当,甚至在数值上更好,同时在回归方面也表现得同样出色,分类方面的指标如准确率、曲线下面积(AUC)、召回率和精确率等,以及回归方面的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)等都证明了这一点。此外,我们开发了一个直观的由自动机器学习驱动的Web应用程序,该程序与FL和CL兼容,以说明我们的平台在进行身体活动和能量消耗预测建模方面的可行性,同时符合FHIR数据报告标准。这些结果凸显了我们的FHIR集成联合学习平台作为未来可互操作且保护隐私的数字健康生态系统的实用框架,以优化连接健康数据使用的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f157/12192955/238ea116672b/peerj-cs-11-2870-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验