Suppr超能文献

一种工程仿生 MPER 肽疫苗在小鼠中诱导弱 HIV 中和抗体。

An Engineered Biomimetic MPER Peptide Vaccine Induces Weakly HIV Neutralizing Antibodies in Mice.

机构信息

Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA.

The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450018, Henan, China.

出版信息

Ann Biomed Eng. 2020 Jul;48(7):1991-2001. doi: 10.1007/s10439-019-02398-8. Epub 2019 Dec 12.

Abstract

A vaccine that induces broadly neutralizing antibodies (bnAbs) against the human immunodeficiency virus (HIV) would be instrumental in controlling the disease. The membrane proximal external region (MPER) peptide is an appealing antigen candidate since it is conserved and is the target of several human bnAbs, such as 2F5. We previously found that liposomes containing cobalt porphyrin-phospholipid (CoPoP) can bind to a his-tagged MPER peptide, resulting in biomimetic antigen presentation on a lipid bilayer. The present study generated various his-tagged, synthetic MPER fragments, which were bound to liposomes containing CoPoP and a synthetic monophosphoryl lipid A (MPLA) and assessed for immunogenicity in mice. MPER peptides with amino acids stretches originating from the membrane insertion point that were at least 25 amino acids in length, had greater 2F5 reactivity and induced stronger antibody responses, compared to shorter ones. Immunization with the lipid-presented MPER elicited stronger antibody responses compared to Alum and Montanide adjuvants, which could recognize recombinant gp41 and gp140 proteins that contained MPER sequences. The induced antibodies neutralized a tier 1A virus that is sensitive to neutralizing antibodies (W61D(TCLA)0.71), but not another tier 1A nor a tier 2 strain. Co-formulation of the MPER peptide with an unrelated malaria protein antigen (Pfs25) that is effectively adjuvanted with liposomes containing CoPoP and MPLA resulted in elicitation of higher MPER antibody levels, but did not improve neutralization, possibly due to interference with proper peptide presentation in the membrane. Murine hybridomas were generated that produced MPER antibodies, but they were non-neutralizing. These results do not show that bnAbs could be generated with MPER peptides and CoPoP liposomes, but do not rule out this possibility with additional improvements to the approach.

摘要

一种能够诱导针对人类免疫缺陷病毒(HIV)的广泛中和抗体(bnAbs)的疫苗对于控制该疾病将是非常重要的。膜近端外部区域(MPER)肽是一种有吸引力的抗原候选物,因为它是保守的,是几种人类 bnAbs 的靶标,如 2F5。我们之前发现,含有钴卟啉磷脂(CoPoP)的脂质体可以与带有 his 标签的 MPER 肽结合,从而在脂质双层上实现仿生抗原呈递。本研究生成了各种带有 his 标签的合成 MPER 片段,这些片段与含有 CoPoP 和合成单磷酰基脂质 A(MPLA)的脂质体结合,并在小鼠中评估其免疫原性。与较短的 MPER 肽相比,具有至少 25 个氨基酸长度的源自膜插入点的氨基酸延伸的 MPER 肽具有更高的 2F5 反应性和诱导更强的抗体反应。与 Alum 和 Montanide 佐剂相比,用脂质呈递的 MPER 免疫可引起更强的抗体反应,这些佐剂可以识别包含 MPER 序列的重组 gp41 和 gp140 蛋白。诱导的抗体中和了对中和抗体敏感的 1A 病毒(W61D(TCLA)0.71),但不能中和另一种 1A 型病毒或 2 型病毒。将 MPER 肽与一种有效的脂质体包封的 CoPoP 和 MPLA 佐剂的无关疟疾蛋白抗原(Pfs25)共同配方化导致更高的 MPER 抗体水平,但没有改善中和作用,可能是由于在膜中适当的肽呈递受到干扰。生成了产生 MPER 抗体的鼠杂交瘤,但它们是非中和性的。这些结果并未表明可以用 MPER 肽和 CoPoP 脂质体产生 bnAbs,但通过对该方法进行额外改进,也不能排除这种可能性。

相似文献

1
An Engineered Biomimetic MPER Peptide Vaccine Induces Weakly HIV Neutralizing Antibodies in Mice.
Ann Biomed Eng. 2020 Jul;48(7):1991-2001. doi: 10.1007/s10439-019-02398-8. Epub 2019 Dec 12.
7
Rational design of membrane proximal external region lipopeptides containing chemical modifications for HIV-1 vaccination.
Clin Vaccine Immunol. 2013 Jan;20(1):39-45. doi: 10.1128/CVI.00615-12. Epub 2012 Oct 31.
8
A fusion intermediate gp41 immunogen elicits neutralizing antibodies to HIV-1.
J Biol Chem. 2014 Oct 24;289(43):29912-26. doi: 10.1074/jbc.M114.569566. Epub 2014 Aug 26.
9
The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects.
Protein Cell. 2018 Jul;9(7):596-615. doi: 10.1007/s13238-018-0534-7. Epub 2018 Apr 17.

引用本文的文献

1
Drug-phospholipid conjugate nano-assembly for drug delivery.
Smart Med. 2024 Dec 22;3(4):e20240053. doi: 10.1002/SMMD.20240053. eCollection 2024 Dec.
3
HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence.
Health Sci Rep. 2024 Sep 23;7(9):e70089. doi: 10.1002/hsr2.70089. eCollection 2024 Sep.
4
GP38 as a vaccine target for Crimean-Congo hemorrhagic fever virus.
NPJ Vaccines. 2023 May 20;8(1):73. doi: 10.1038/s41541-023-00663-5.
5
6
Molecular recognition of a membrane-anchored HIV-1 pan-neutralizing epitope.
Commun Biol. 2022 Nov 18;5(1):1265. doi: 10.1038/s42003-022-04219-6.
7
Emerging vaccine nanotechnology: From defense against infection to sniping cancer.
Acta Pharm Sin B. 2022 May;12(5):2206-2223. doi: 10.1016/j.apsb.2021.12.021. Epub 2022 Jan 4.
9
A Potent Cancer Vaccine Adjuvant System for Particleization of Short, Synthetic CD8 T Cell Epitopes.
ACS Nano. 2021 Mar 23;15(3):4357-4371. doi: 10.1021/acsnano.0c07680. Epub 2021 Feb 19.
10
HPV-Associated Tumor Eradication by Vaccination with Synthetic Short Peptides and Particle-Forming Liposomes.
Small. 2021 Mar;17(11):e2007165. doi: 10.1002/smll.202007165. Epub 2021 Feb 19.

本文引用的文献

1
Metalloporphyrin Nanoparticles: Coordinating Diverse Theranostic Functions.
Coord Chem Rev. 2019 Jan 15;379:99-120. doi: 10.1016/j.ccr.2017.09.002. Epub 2017 Sep 22.
2
A malaria vaccine adjuvant based on recombinant antigen binding to liposomes.
Nat Nanotechnol. 2018 Dec;13(12):1174-1181. doi: 10.1038/s41565-018-0271-3. Epub 2018 Oct 8.
4
Effects of HIV-1 gp41-Derived Virucidal Peptides on Virus-like Lipid Membranes.
Biophys J. 2017 Sep 19;113(6):1301-1310. doi: 10.1016/j.bpj.2017.06.061. Epub 2017 Aug 7.
5
Vaccine nanoparticles for protection against HIV infection.
Nanomedicine (Lond). 2017 Mar;12(6):673-682. doi: 10.2217/nnm-2016-0381. Epub 2017 Feb 21.
7
Identification and specificity of broadly neutralizing antibodies against HIV.
Immunol Rev. 2017 Jan;275(1):11-20. doi: 10.1111/imr.12484.
8
Design of Hydrated Porphyrin-Phospholipid Bilayers with Enhanced Magnetic Resonance Contrast.
Small. 2017 Jan;13(1). doi: 10.1002/smll.201602505. Epub 2016 Oct 14.
9
HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies.
Immunity. 2016 Sep 20;45(3):483-496. doi: 10.1016/j.immuni.2016.08.016. Epub 2016 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验