Suppr超能文献

金属卟啉纳米颗粒:协调多种诊疗功能

Metalloporphyrin Nanoparticles: Coordinating Diverse Theranostic Functions.

作者信息

Shao Shuai, Rajendiran Venugopal, Lovell Jonathan F

机构信息

Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.

Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India.

出版信息

Coord Chem Rev. 2019 Jan 15;379:99-120. doi: 10.1016/j.ccr.2017.09.002. Epub 2017 Sep 22.

Abstract

Metalloporphyrins serve key roles in natural biological processes and also have demonstrated utility for biomedical applications. They can be encapsulated or grafted in conventional nanoparticles or can self-assemble themselves at the nanoscale. A wide range of metals can be stably chelated either before or after porphyrin nanoparticle formation, without the necessity of any additional chelator chemistry. The addition of metals can substantially alter a range of behaviors such as modulating phototherapeutic efficacy; conferring responsiveness to biological stimuli; or providing contrast for magnetic resonance, positron emission or surface enhanced Raman imaging. Chelated metals can also provide a convenient handle for bioconjugation with other molecules via axial coordination. This review provides an overview of some recent biomedical, nanoparticulate approaches involving gain-of-function metalloporphyrins and related molecules.

摘要

金属卟啉在自然生物过程中发挥着关键作用,并且在生物医学应用中也显示出实用性。它们可以被封装或接枝到传统纳米颗粒中,或者可以在纳米尺度上进行自组装。在卟啉纳米颗粒形成之前或之后,多种金属都可以被稳定螯合,而无需任何额外的螯合剂化学处理。金属的添加可以显著改变一系列行为,如调节光疗效果;赋予对生物刺激的响应性;或为磁共振、正电子发射或表面增强拉曼成像提供对比度。螯合金属还可以通过轴向配位为与其他分子的生物偶联提供便利的途径。本综述概述了一些近期涉及功能增强型金属卟啉及相关分子的生物医学纳米颗粒方法。

相似文献

1
Metalloporphyrin Nanoparticles: Coordinating Diverse Theranostic Functions.
Coord Chem Rev. 2019 Jan 15;379:99-120. doi: 10.1016/j.ccr.2017.09.002. Epub 2017 Sep 22.
3
Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications.
Acc Chem Res. 2018 Mar 20;51(3):778-788. doi: 10.1021/acs.accounts.7b00635. Epub 2018 Feb 28.
4
Effect of the nature of the chelated metal on the photodynamic activity of metalloporphyrins.
Free Radic Res. 2023 May-Jun;57(6-12):487-499. doi: 10.1080/10715762.2023.2288997. Epub 2023 Dec 26.
5
Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications.
Nanomedicine (Lond). 2020 Oct;15(25):2493-2515. doi: 10.2217/nnm-2020-0125. Epub 2020 Sep 25.
8
Structural Investigations, Cellular Imaging, and Radiolabeling of Neutral, Polycationic, and Polyanionic Functional Metalloporphyrin Conjugates.
Bioconjug Chem. 2021 Jul 21;32(7):1374-1392. doi: 10.1021/acs.bioconjchem.0c00691. Epub 2021 Feb 1.
9
The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices.
Biotechnol Adv. 2016 Jul-Aug;34(4):354-361. doi: 10.1016/j.biotechadv.2016.02.001. Epub 2016 Feb 4.
10
Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media.
Adv Colloid Interface Sci. 2020 Mar;277:102108. doi: 10.1016/j.cis.2020.102108. Epub 2020 Jan 23.

引用本文的文献

1
Recent Advancement in MRI-Based Nanotheranostic Agents for Tumor Diagnosis and Therapy Integration.
Int J Nanomedicine. 2025 Aug 29;20:10503-10540. doi: 10.2147/IJN.S529003. eCollection 2025.
5
Application and Challenge of Metalloporphyrin Sensitizers in Noninvasive Dynamic Tumor Therapy.
Molecules. 2024 Oct 11;29(20):4828. doi: 10.3390/molecules29204828.
6
A Review on Recent Trends in Photo-Drug Efficiency of Advanced Biomaterials in Photodynamic Therapy of Cancer.
Mini Rev Med Chem. 2025;25(4):259-276. doi: 10.2174/0113895575320468240912093945.
8
Advancing cancer theranostics through biomimetics: A comprehensive review.
Heliyon. 2024 Mar 11;10(6):e27692. doi: 10.1016/j.heliyon.2024.e27692. eCollection 2024 Mar 30.
10
Mn(iii), Fe(iii) and Zn(ii)-serum albumin as innovative multicolour contrast agents for photoacoustic imaging.
Nanoscale Adv. 2023 Dec 24;6(3):777-781. doi: 10.1039/d3na00843f. eCollection 2024 Jan 30.

本文引用的文献

1
Dual pH-responsive mesoporous silica nanoparticles for efficient combination of chemotherapy and photodynamic therapy.
J Mater Chem B. 2015 Jun 21;3(23):4707-4714. doi: 10.1039/c5tb00256g. Epub 2015 May 26.
3
Advanced Functional Nanomaterials for Theranostics.
Adv Funct Mater. 2017 Jan 12;27(2). doi: 10.1002/adfm.201603524. Epub 2016 Nov 7.
4
Emerging applications of porphyrins in photomedicine.
Front Phys. 2015 Apr;3. doi: 10.3389/fphy.2015.00023. Epub 2015 Apr 10.
5
Implantable Tin Porphyrin-PEG Hydrogels with pH-Responsive Fluorescence.
Biomacromolecules. 2017 Feb 13;18(2):562-567. doi: 10.1021/acs.biomac.6b01715. Epub 2017 Feb 1.
6
Chemophototherapy: An Emerging Treatment Option for Solid Tumors.
Adv Sci (Weinh). 2016 May 24;4(1):1600106. doi: 10.1002/advs.201600106. eCollection 2017 Jan.
7
Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy.
ACS Nano. 2017 Jan 24;11(1):927-937. doi: 10.1021/acsnano.6b07525. Epub 2016 Dec 29.
8
Liposomal Texaphyrin Theranostics for Metastatic Liver Cancer.
J Am Chem Soc. 2016 Dec 21;138(50):16380-16387. doi: 10.1021/jacs.6b09713. Epub 2016 Dec 7.
9
Sphingomyelin Liposomes Containing Porphyrin-phospholipid for Irinotecan Chemophototherapy.
Theranostics. 2016 Oct 1;6(13):2329-2336. doi: 10.7150/thno.15701. eCollection 2016.
10
The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea.
Science. 2016 Oct 21;354(6310):339-342. doi: 10.1126/science.aag2947.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验