Shao Shuai, Rajendiran Venugopal, Lovell Jonathan F
Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.
Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India.
Coord Chem Rev. 2019 Jan 15;379:99-120. doi: 10.1016/j.ccr.2017.09.002. Epub 2017 Sep 22.
Metalloporphyrins serve key roles in natural biological processes and also have demonstrated utility for biomedical applications. They can be encapsulated or grafted in conventional nanoparticles or can self-assemble themselves at the nanoscale. A wide range of metals can be stably chelated either before or after porphyrin nanoparticle formation, without the necessity of any additional chelator chemistry. The addition of metals can substantially alter a range of behaviors such as modulating phototherapeutic efficacy; conferring responsiveness to biological stimuli; or providing contrast for magnetic resonance, positron emission or surface enhanced Raman imaging. Chelated metals can also provide a convenient handle for bioconjugation with other molecules via axial coordination. This review provides an overview of some recent biomedical, nanoparticulate approaches involving gain-of-function metalloporphyrins and related molecules.
金属卟啉在自然生物过程中发挥着关键作用,并且在生物医学应用中也显示出实用性。它们可以被封装或接枝到传统纳米颗粒中,或者可以在纳米尺度上进行自组装。在卟啉纳米颗粒形成之前或之后,多种金属都可以被稳定螯合,而无需任何额外的螯合剂化学处理。金属的添加可以显著改变一系列行为,如调节光疗效果;赋予对生物刺激的响应性;或为磁共振、正电子发射或表面增强拉曼成像提供对比度。螯合金属还可以通过轴向配位为与其他分子的生物偶联提供便利的途径。本综述概述了一些近期涉及功能增强型金属卟啉及相关分子的生物医学纳米颗粒方法。