Suppr超能文献

螺旋手性芳烃:通过π-电子体系的[2+2+2]环加成反应合成螺旋芳烃。

Helically Chiral Aromatics: The Synthesis of Helicenes by [2 + 2 + 2] Cycloisomerization of π-Electron Systems.

机构信息

Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic.

出版信息

Acc Chem Res. 2020 Jan 21;53(1):144-158. doi: 10.1021/acs.accounts.9b00364. Epub 2019 Dec 13.

Abstract

Advanced molecular nanocarbons are now in the spotlight reflecting the basic discoveries of fullerenes, carbon nanotubes, and graphene. This research area includes also the chemistry, physics, and nanoscience of nonplanar polycyclic hydrocarbons, many of which exhibit helical chirality, such as iconic helicenes and their congeners. The combination of unique π-electron systems with the chirality phenomenon makes them highly attractive in various fields of science. Helicenes are polyaromatic compounds that are composed of all-angularly annulated benzene units, but other (hetero)cycles can also be embedded into their backbone. Even though they do not contain any stereogenic center, they are inherently chiral owing to the helical shape they adopt. Hexahelicene and higher homologues are conformationally stable within a reasonable range of temperatures and, therefore, can be obtained in an enantiopure form through a racemate resolution or asymmetric synthesis. An amazing array of synthetic methods for their preparation has been developed, but only a few of them have passed the tough scrutiny to be general, robust and practical methods such as traditional photocyclodehydrogenation of diaryl olefins and recently developed transition-metal-catalyzed [2 + 2 + 2] cycloisomerization of π-electron systems, which is discussed in this Account. Alkyne [2 + 2 + 2] cycloisomerization is a highly exergonic process and is therefore suitable for forming the strained helicene backbone, three (or more) cycles of which are closed in a single operation. The typical starting materials are aromatic triynes (optionally cyanodiynes or ynedinitriles) or tetraynes with diynes that undergo intramolecular or intermolecular cyclization, respectively, catalyzed by various complexes mainly of Ni, Co, or Rh. Utilizing this synthetic methodology, various [5]-, [6]-, [7]-, [9]-, [11]-, [13]-, [16]-, [17]-, and [19]helicenes or their congeners, including functionalized derivatives, can be effectively prepared. Moreover, asymmetric synthesis (both catalytic and stoichiometric) of nonracemic helicenes has already been demonstrated. It relies on [2 + 2 + 2] cycloisomerization of centrally chiral triynes followed by an asymmetric transformation of the first order (controlled by the 1,3-allylic-type strain) or on enantioselective [2 + 2 + 2] cycloisomerization of alkynes catalyzed by chiral complexes mainly of Ni or Rh. Intriguingly, advanced helical architectures were formed such as the longest helicenes (up to oxa[19]helicene by closing 12 rings in a single synthetic operation) or laterally extended helicenes (e.g., pyreno[7]helicenes). Utilizing the aforementioned synthetic methodology, the tailor-made helical molecular nanocarbons are now better accessible to be applied in enantioselective catalysis, chirality sensing, spintronics (based on chirality induced spin selectivity), chiroptics (to produce circularly polarized light emission), organic/molecular electronics, or chiral single molecule devices.

摘要

先进的分子纳米碳现在成为焦点,反映了富勒烯、碳纳米管和石墨烯的基础发现。这个研究领域还包括非平面多环烃的化学、物理和纳米科学,其中许多都表现出螺旋手性,如标志性的螺旋芳烃及其同系物。独特的π-电子系统与手性现象的结合,使它们在科学的各个领域具有很高的吸引力。螺旋芳烃是由全角环合的苯单元组成的多环芳烃化合物,但其他(杂)环也可以嵌入其骨架中。尽管它们不含任何立体中心,但由于它们采用的螺旋形状,它们本质上是手性的。六螺旋烷及其同系物在合理的温度范围内具有构象稳定性,因此可以通过外消旋体拆分或不对称合成以对映纯的形式获得。已经开发了许多用于其制备的惊人的合成方法,但只有少数通过了严格的审查,成为通用的、稳健的和实用的方法,如传统的二芳基烯烃光环脱氢和最近开发的π-电子体系的过渡金属催化[2 + 2 + 2]环加成反应,这在本述评中进行了讨论。炔烃[2 + 2 + 2]环加成是一个高度放能的过程,因此适合形成应变螺旋芳烃骨架,其中三个(或更多)环在单个操作中闭合。典型的起始材料是芳基三炔(可选的氰基二炔或二炔二腈)或四炔,分别通过各种主要为 Ni、Co 或 Rh 的配合物催化的分子内或分子间环化反应。利用这种合成方法,可以有效地制备各种[5]-、[6]-、[7]-、[9]-、[11]-、[13]-、[16]-、[17]-和[19]-螺旋芳烃或其同系物,包括功能化衍生物。此外,非对映纯螺旋芳烃的不对称合成(均相和非均相)已经得到证明。它依赖于中心手性三炔的[2 + 2 + 2]环加成,然后是一级不对称转化(由 1,3-烯丙型应变控制),或手性 Ni 或 Rh 配合物催化的炔烃的对映选择性[2 + 2 + 2]环加成。有趣的是,形成了先进的螺旋结构,如最长的螺旋芳烃(通过在单个合成操作中关闭 12 个环,可达氧杂[19]螺旋芳烃)或侧向扩展的螺旋芳烃(如吡咯并[7]螺旋芳烃)。利用上述合成方法,现在可以更好地获得定制的螺旋分子纳米碳,以应用于对映选择性催化、手性传感、自旋电子学(基于手性诱导的自旋选择性)、手性光学(产生圆偏振光发射)、有机/分子电子学或手性单分子器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验