Suppr超能文献

[8] 螺旋烯二亚胺中的类弹簧行为:螺旋螺距如何控制光学各向异性和电子共轭

Spring-Like Behavior in [8]Helicene Diimides: How Helical Pitch Governs Optical Anisotropy and Electronic Conjugation.

作者信息

Saal Fridolin, Brancaccio Vincenzo, Radacki Krzysztof, Braunschweig Holger, Ravat Prince

机构信息

Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany.

Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany.

出版信息

Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202508779. doi: 10.1002/anie.202508779. Epub 2025 Jul 7.

Abstract

Helicenes, with their corkscrew-shaped geometry, have emerged as prototypical molecular springs for engineering chiral functional materials through precise structural modulation. Here we introduce the design and synthesis of [8]helicene diimides ([8]HDIs) and demonstrate that the helical pitch of their backbone can be precisely tuned by bridging the imide nitrogen atoms with alkyl chains of varying lengths (C-C). This approach constrains the molecular geometry to systematically control optical anisotropy, chiroptical response, and electronic communication. Remarkably, modulation of the helical pitch leads to high optical dissymmetry factors (up to 6.0 × 10) and enhanced through-space conjugation. Furthermore, we investigate how variations in the helical pitch affect crystal packing in both enantiopure and racemic samples. Complementary quantum chemical calculations provide insights into the origins of these properties, highlighting the potential of this strategy for designing advanced chiral materials.

摘要

螺旋烯具有螺旋状几何结构,已成为通过精确结构调制来设计手性功能材料的典型分子弹簧。在此,我们介绍了[8]螺旋烯二亚胺([8]HDIs)的设计与合成,并证明通过用不同长度的烷基链(C-C)桥接亚胺氮原子,可以精确调节其主链的螺旋螺距。这种方法限制分子几何结构,以系统地控制光学各向异性、手性光学响应和电子通讯。值得注意的是,螺旋螺距的调制导致了高光学不对称因子(高达6.0×10)并增强了空间共轭。此外,我们研究了螺旋螺距的变化如何影响对映纯和外消旋样品中的晶体堆积。互补的量子化学计算为这些性质的起源提供了见解,突出了该策略在设计先进手性材料方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f70/12363639/c087b4eef5b8/ANIE-64-e202508779-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验