Suppr超能文献

衰老和长寿中的可变剪接。

Alternative splicing in aging and longevity.

机构信息

Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.

出版信息

Hum Genet. 2020 Mar;139(3):357-369. doi: 10.1007/s00439-019-02094-6. Epub 2019 Dec 13.

Abstract

Alternative pre-mRNA splicing increases the complexity of the proteome that can be generated from the available genomic coding sequences. Dysregulation of the splicing process has been implicated in a vast repertoire of diseases. However, splicing has recently been linked to both the aging process itself and pro-longevity interventions. This review focuses on recent research towards defining RNA splicing as a new hallmark of aging. We highlight dysfunctional alternative splicing events that contribute to the aging phenotype across multiple species, along with recent efforts toward deciphering mechanistic roles for RNA splicing in the regulation of aging and longevity. Further, we discuss recent research demonstrating a direct requirement for specific splicing factors in pro-longevity interventions, and specifically how nutrient signaling pathways interface to splicing factor regulation and downstream splicing targets. Finally, we review the emerging potential of using splicing profiles as a predictor of biological age and life expectancy. Understanding the role of RNA splicing components and downstream targets altered in aging may provide opportunities to develop therapeutics and ultimately extend healthy lifespan in humans.

摘要

可变剪接增加了可从现有基因组编码序列产生的蛋白质组的复杂性。剪接过程的失调与大量疾病有关。然而,剪接最近与衰老过程本身和延长寿命的干预措施有关。本综述重点介绍了最近将 RNA 剪接定义为衰老新标志的研究。我们强调了在多种物种中导致衰老表型的功能失调的可变剪接事件,以及最近在解析 RNA 剪接在衰老和寿命调控中的机制作用方面的努力。此外,我们讨论了最近的研究表明,特定剪接因子在延长寿命的干预中具有直接的需求,特别是营养信号通路如何与剪接因子调节和下游剪接靶标相互作用。最后,我们回顾了使用剪接谱作为生物年龄和预期寿命预测因子的新兴潜力。了解在衰老过程中改变的 RNA 剪接成分和下游靶标可能为开发治疗方法并最终延长人类健康寿命提供机会。

相似文献

1
Alternative splicing in aging and longevity.
Hum Genet. 2020 Mar;139(3):357-369. doi: 10.1007/s00439-019-02094-6. Epub 2019 Dec 13.
3
Multi-level remodeling of transcriptional landscapes in aging and longevity.
BMB Rep. 2019 Jan;52(1):86-108. doi: 10.5483/BMBRep.2019.52.1.296.
4
Age-Related Alternative Splicing: Driver or Passenger in the Aging Process?
Cells. 2023 Dec 12;12(24):2819. doi: 10.3390/cells12242819.
5
Alternative Splicing and Isoforms: From Mechanisms to Diseases.
Genes (Basel). 2022 Feb 24;13(3):401. doi: 10.3390/genes13030401.
7
FOXO1 and ETV6 genes may represent novel regulators of splicing factor expression in cellular senescence.
FASEB J. 2019 Jan;33(1):1086-1097. doi: 10.1096/fj.201801154R. Epub 2018 Aug 8.
8
Pre-mRNA splicing modulations in senescence.
Aging Cell. 2002 Oct;1(1):10-6. doi: 10.1046/j.1474-9728.2002.00005.x.
10
RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing.
Genome Res. 2019 Oct;29(10):1591-1604. doi: 10.1101/gr.246678.118. Epub 2019 Aug 21.

引用本文的文献

1
Mechanisms and therapeutic strategies linking mesenchymal stem cells senescence to osteoporosis.
Front Endocrinol (Lausanne). 2025 Jul 21;16:1625806. doi: 10.3389/fendo.2025.1625806. eCollection 2025.
2
Intron Retention and Alzheimer's Disease (AD): A Review of Regulation Genes Implicated in AD.
Genes (Basel). 2025 Jun 30;16(7):782. doi: 10.3390/genes16070782.
3
Systematic identification of exercise-induced anti-aging processes involving intron retention.
J Gerontol A Biol Sci Med Sci. 2025 Jul 24;80(8). doi: 10.1093/gerona/glaf146.
4
Alternative splicing and the aging brain in AfrAbia: New frontiers in dementia research.
IBRO Neurosci Rep. 2025 Jun 16;19:101-109. doi: 10.1016/j.ibneur.2025.06.006. eCollection 2025 Dec.
5
Quinacrine and rimonabant prolong the life span of Caenorhabditis elegans.
Geroscience. 2025 Jun 25. doi: 10.1007/s11357-025-01729-z.
6
RNA splicing: Novel star in pulmonary diseases with a treatment perspective.
Acta Pharm Sin B. 2025 May;15(5):2301-2322. doi: 10.1016/j.apsb.2025.03.023. Epub 2025 Mar 13.
7
Aging-related alternative splicing drive neoantigen emergence revealed by transcriptome analysis of 1,255 human blood samples.
Front Aging. 2025 May 9;6:1575862. doi: 10.3389/fragi.2025.1575862. eCollection 2025.
10
Promoting health and survival through lowered body temperature.
Nat Aging. 2025 May;5(5):740-749. doi: 10.1038/s43587-025-00850-0. Epub 2025 Apr 9.

本文引用的文献

1
Dietary restriction in ILSXISS mice is associated with widespread changes in splicing regulatory factor expression levels.
Exp Gerontol. 2019 Dec;128:110736. doi: 10.1016/j.exger.2019.110736. Epub 2019 Sep 12.
2
mTOR-regulated U2af1 tandem exon splicing specifies transcriptome features for translational control.
Nucleic Acids Res. 2019 Nov 4;47(19):10373-10387. doi: 10.1093/nar/gkz761.
4
Dietary restriction induces posttranscriptional regulation of longevity genes.
Life Sci Alliance. 2019 Jun 28;2(4). doi: 10.26508/lsa.201800281. Print 2019 Aug.
6
Introns are mediators of cell response to starvation.
Nature. 2019 Jan;565(7741):612-617. doi: 10.1038/s41586-018-0859-7. Epub 2019 Jan 16.
7
Excised linear introns regulate growth in yeast.
Nature. 2019 Jan;565(7741):606-611. doi: 10.1038/s41586-018-0828-1. Epub 2019 Jan 16.
8
NOVA1 directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in cancer cells.
Oncogene. 2019 Apr;38(16):2937-2952. doi: 10.1038/s41388-018-0639-8. Epub 2018 Dec 19.
9
FOXO1 and ETV6 genes may represent novel regulators of splicing factor expression in cellular senescence.
FASEB J. 2019 Jan;33(1):1086-1097. doi: 10.1096/fj.201801154R. Epub 2018 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验