Suppr超能文献

切除线性内含子可调控酵母生长。

Excised linear introns regulate growth in yeast.

机构信息

Howard Hughes Medical Institute, Cambridge, MA, USA.

Whitehead Institute for Biomedical Research, Cambridge, MA, USA.

出版信息

Nature. 2019 Jan;565(7741):606-611. doi: 10.1038/s41586-018-0828-1. Epub 2019 Jan 16.

Abstract

Spliceosomal introns are ubiquitous non-coding RNAs that are typically destined for rapid debranching and degradation. Here we describe 34 excised introns in Saccharomyces cerevisiae that-despite being rapidly degraded in log-phase growth-accumulate as linear RNAs under either saturated-growth conditions or other stresses that cause prolonged inhibition of TORC1, which is a key integrator of growth signalling. Introns that become stabilized remain associated with components of the spliceosome and differ from other spliceosomal introns in having a short distance between their lariat branch point and 3' splice site, which is necessary and sufficient for their stabilization. Deletion of these unusual introns is disadvantageous in saturated conditions and causes aberrantly high growth rates in yeast that are chronically challenged with the TORC1 inhibitor rapamycin. The reintroduction of native or engineered stable introns suppresses this aberrant rapamycin response. Thus, excised introns function within the TOR growth-signalling network of S. cerevisiae and, more generally, excised spliceosomal introns can have biological functions.

摘要

剪接体内含子是普遍存在的非编码 RNA,通常注定要快速分枝和降解。在这里,我们描述了酿酒酵母中的 34 个剪接体内含子,尽管在对数生长期快速降解,但在饱和生长条件下或其他导致 TORC1 长时间抑制的应激条件下,它们会积累为线性 RNA。TORC1 是生长信号的关键整合因子。稳定的内含子仍然与剪接体的组成部分相关,并且与其他剪接体内含子不同,它们的套索分支点和 3'剪接位点之间的距离很短,这对于它们的稳定是必要和充分的。这些不寻常内含子的缺失在饱和条件下是不利的,并且在酵母中引起异常高的生长速率,酵母长期受到 TORC1 抑制剂 rapamycin 的挑战。这些不寻常内含子的重新引入抑制了这种异常的 rapamycin 反应。因此,剪接体内含子在酿酒酵母的 TOR 生长信号网络中发挥作用,更普遍地说,剪接体内含子可以具有生物学功能。

相似文献

1
Excised linear introns regulate growth in yeast.
Nature. 2019 Jan;565(7741):606-611. doi: 10.1038/s41586-018-0828-1. Epub 2019 Jan 16.
3
Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.
Mol Microbiol. 2016 Apr;100(2):303-14. doi: 10.1111/mmi.13319. Epub 2016 Mar 10.
4
The histone variant H2A.Z promotes efficient cotranscriptional splicing in .
Genes Dev. 2017 Apr 1;31(7):702-717. doi: 10.1101/gad.295188.116.
5
Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome.
PLoS Genet. 2019 Aug 22;15(8):e1008249. doi: 10.1371/journal.pgen.1008249. eCollection 2019 Aug.
6
Genome-wide identification of spliced introns using a tiling microarray.
Genome Res. 2007 Apr;17(4):503-9. doi: 10.1101/gr.6049107. Epub 2007 Mar 9.
8
Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast.
Genes Dev. 2013 Sep 15;27(18):2025-38. doi: 10.1101/gad.221960.113.
9
Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing.
Nature. 2011 May 25;474(7350):173-8. doi: 10.1038/nature10143.
10

引用本文的文献

2
Cells resist starvation through a nutrient stress splice switch.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf525.
3
Unraveling gene expression: a beginner's guide from chromatin modifications to mRNA export in .
Nucleus. 2025 Dec;16(1):2516909. doi: 10.1080/19491034.2025.2516909. Epub 2025 Jun 13.
4
Comprehensive analysis of Saccharomyces cerevisiae intron structures in vivo.
Nat Struct Mol Biol. 2025 Jun 5. doi: 10.1038/s41594-025-01565-x.
5
WRKY genes provide insight into the role of arbuscular mycorrhizal symbiosis in defense against .
Front Plant Sci. 2025 Feb 7;16:1510196. doi: 10.3389/fpls.2025.1510196. eCollection 2025.
8
Free introns of tRNAs as complementarity-dependent regulators of gene expression.
Mol Cell. 2025 Feb 20;85(4):726-741.e6. doi: 10.1016/j.molcel.2025.01.019. Epub 2025 Feb 11.
10
Dynamics of RNA localization to nuclear speckles are connected to splicing efficiency.
Sci Adv. 2024 Oct 18;10(42):eadp7727. doi: 10.1126/sciadv.adp7727. Epub 2024 Oct 16.

本文引用的文献

1
New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi.
mSphere. 2018 Apr 25;3(2). doi: 10.1128/mSphere.00154-18.
3
Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae.
Cell. 2017 Sep 21;171(1):120-132.e12. doi: 10.1016/j.cell.2017.08.029. Epub 2017 Sep 14.
4
Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability.
Mol Cell. 2017 Aug 17;67(4):608-621.e6. doi: 10.1016/j.molcel.2017.07.002. Epub 2017 Jul 27.
5
kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences.
Nucleic Acids Res. 2017 Jul 3;45(W1):W534-W538. doi: 10.1093/nar/gkx323.
6
mTOR Signaling in Growth, Metabolism, and Disease.
Cell. 2017 Mar 9;168(6):960-976. doi: 10.1016/j.cell.2017.02.004.
7
Functional Metabolomics Describes the Yeast Biosynthetic Regulome.
Cell. 2016 Oct 6;167(2):553-565.e12. doi: 10.1016/j.cell.2016.09.007. Epub 2016 Sep 29.
8
An evolutionarily conserved pathway controls proteasome homeostasis.
Nature. 2016 Aug 11;536(7615):184-9. doi: 10.1038/nature18943. Epub 2016 Jul 27.
9
Novel Intronic RNA Structures Contribute to Maintenance of Phenotype in Saccharomyces cerevisiae.
Genetics. 2016 Jul;203(3):1469-81. doi: 10.1534/genetics.115.185363. Epub 2016 May 18.
10
Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation.
Cell Rep. 2016 Feb 23;14(7):1787-1799. doi: 10.1016/j.celrep.2016.01.043. Epub 2016 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验