Pfisterer Jonas H K, Baghernejad Masoud, Giuzio Giovanni, Domke Katrin F
Molecular Spectroscopy Department, Electrochemical Surface Science Group, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Nat Commun. 2019 Dec 13;10(1):5702. doi: 10.1038/s41467-019-13692-3.
Electrocatalysts often show increased conversion at nanoscale chemical or topographic surface inhomogeneities, resulting in spatially heterogeneous reactivity. Identifying reacting species locally with nanometer precision during chemical conversion is one of the biggest quests in electrochemical surface science to advance (electro)catalysis and related fields. Here, we demonstrate that electrochemical tip-enhanced Raman spectroscopy can be used for combined topography and reactivity imaging of electro-active surface sites under reaction conditions. We map the electrochemical oxidation of Au nanodefects, a showcase energy conversion and corrosion reaction, with a chemical spatial sensitivity of about 10 nm. The results indicate the reversible, concurrent formation of spatially separated AuO and AuO species at defect-terrace and protrusion sites on the defect, respectively. Active-site chemical nano-imaging under realistic working conditions is expected to be pivotal in a broad range of disciplines where quasi-atomistic reactivity understanding could enable strategic engineering of active sites to rationally tune (electro)chemical device properties.
电催化剂通常在纳米级化学或形貌表面不均匀性处表现出更高的转化率,从而导致空间异质反应性。在化学转化过程中以纳米精度局部识别反应物种是电化学表面科学中推进(电)催化及相关领域发展的最大挑战之一。在此,我们证明了电化学针尖增强拉曼光谱可用于在反应条件下对电活性表面位点进行形貌和反应性成像。我们绘制了金纳米缺陷的电化学氧化图,这是一个能量转换和腐蚀反应的实例,其化学空间灵敏度约为10纳米。结果表明,在缺陷的台阶和突出部位分别可逆地、同时形成了空间分离的AuO和AuO物种。在实际工作条件下进行活性位点化学纳米成像,有望在广泛的学科中发挥关键作用,在这些学科中,对准原子反应性的理解能够实现活性位点的战略工程设计,从而合理调节(电)化学装置的性能。