Wyss Roman M, Kewes Günter, Marabotti Pietro, Koepfli Stefan M, Schlichting Karl-Philipp, Parzefall Markus, Bonvin Eric, Sarott Martin F, Trassin Morgan, Oezkent Maximilian, Lu Chen-Hsun, Gradwohl Kevin-P, Perrault Thomas, Habibova Lala, Marcelli Giorgia, Giraldo Marcela, Vermant Jan, Novotny Lukas, Frimmer Martin, Weber Mads C, Heeg Sebastian
Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.
Soft Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
Nat Commun. 2024 Jun 19;15(1):5236. doi: 10.1038/s41467-024-49130-2.
Raman spectroscopy enables the non-destructive characterization of chemical composition, crystallinity, defects, or strain in countless materials. However, the Raman response of surfaces or thin films is often weak and obscured by dominant bulk signals. Here we overcome this limitation by placing a transferable porous gold membrane, (PAuM) on the surface of interest. Slot-shaped nanopores in the membrane act as plasmonic antennas and enhance the Raman response of the surface or thin film underneath. Simultaneously, the PAuM suppresses the penetration of the excitation laser into the bulk, efficiently blocking its Raman signal. Using graphene as a model surface, we show that this method increases the surface-to-bulk Raman signal ratio by three orders of magnitude. We find that 90% of the Raman enhancement occurs within the top 2.5 nm of the material, demonstrating truly surface-sensitive Raman scattering. To validate our approach, we quantify the strain in a 12.5 nm thin Silicon film and analyze the surface of a LaNiO thin film. We observe a Raman mode splitting for the LaNiO surface-layer, which is spectroscopic evidence that the surface structure differs from the bulk. These results validate that PAuM gives direct access to Raman signatures of thin films and surfaces.
拉曼光谱能够对无数材料的化学成分、结晶度、缺陷或应变进行无损表征。然而,表面或薄膜的拉曼响应通常很弱,并且会被占主导地位的体信号所掩盖。在这里,我们通过在感兴趣的表面放置可转移的多孔金膜(PAuM)来克服这一限制。膜中的狭缝形纳米孔充当等离子体天线,增强其下方表面或薄膜的拉曼响应。同时,PAuM抑制激发激光穿透到体相中,有效阻挡其拉曼信号。以石墨烯作为模型表面,我们表明这种方法将表面与体相的拉曼信号比提高了三个数量级。我们发现90%的拉曼增强发生在材料顶部2.5纳米范围内,这证明了真正的表面敏感拉曼散射。为了验证我们的方法,我们对12.5纳米厚的硅薄膜中的应变进行了量化,并分析了LaNiO薄膜的表面。我们观察到LaNiO表面层的拉曼模式分裂,这是表面结构与体相不同的光谱证据。这些结果证实了PAuM能够直接获取薄膜和表面的拉曼特征。