Centre for Plasma and Laser Engineering , The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences , Fiszera 14 Street , 80-231 Gdańsk , Poland.
ACS Appl Mater Interfaces. 2020 Jan 15;12(2):3225-3235. doi: 10.1021/acsami.9b19206. Epub 2019 Dec 30.
Titanium dioxide nanotubes gain considerable attention as a photoactive material due to chemical stability, photocorrosion resistance, or low-cost manufacturing method. This work presents scalable pulsed laser modification of TiO nanotubes resulting in enhanced photoactivity in a system equipped with a motorized table, which allows for modifications of both precisely selected and any-large sample area. Images obtained from scanning electron microscopy along with Raman and UV-vis spectra of laser-treated samples in a good agreement indicate the presence of additional laser-induced shallow states within band gap via degradation of crystalline structure. However, X-ray photoelectron spectroscopy spectra revealed no change of chemical nature of the modified sample surface. Photoelectrochemical measurements demonstrate superior photoresponse of laser-treated samples up to 1.45-fold for an energy beam fluence of 40 mJ/cm compared to that of calcined one. According to the obtained results, optimal processing parameters were captured. Mott-Schottky analysis obtained from impedance measurements indicates an enormous (over an order of magnitude) increase of donor density along with a +0.74 V positive shift of flat band potential. Such changes in electronic structure are most likely responsible for enhanced photoactivity. Thus, the elaborated method of laser nanostructuring can be successfully employed to the large-scale modification of titania nanotubes resulting in their superior photoactivity. According to that, the results of our work provide a contribution to wider applications of materials based on titania nanotubes.
由于化学稳定性、光抗腐蚀性或低成本制造方法,二氧化钛纳米管作为一种光活性材料引起了相当大的关注。这项工作提出了一种可扩展的脉冲激光修饰 TiO 纳米管的方法,该方法在配备电动工作台的系统中可提高光活性,该系统可对精确选择的和任何大面积的样品进行修饰。从扫描电子显微镜获得的图像以及激光处理样品的拉曼和紫外可见光谱的良好一致性表明,通过晶体结构的降解,在带隙内存在额外的激光诱导浅态。然而,X 射线光电子能谱(XPS)光谱显示,改性样品表面的化学性质没有变化。光电化学测量表明,与煅烧样品相比,激光处理样品在 40 mJ/cm² 的能量束能下的光响应提高了 1.45 倍。根据获得的结果,捕获了最佳的处理参数。从阻抗测量获得的 Mott-Schottky 分析表明,施主密度呈指数级增加,同时平带电位正向移动 0.74 V。这种电子结构的变化很可能是光活性增强的原因。因此,所阐述的激光纳米结构化方法可成功用于 TiO 纳米管的大规模改性,从而提高其光活性。因此,我们工作的结果为更广泛地应用基于 TiO 纳米管的材料提供了贡献。