Pisarek Marcin, Krawczyk Mirosław, Kosiński Andrzej, Hołdyński Marcin, Andrzejczuk Mariusz, Krajczewski Jan, Bieńkowski Krzysztof, Solarska Renata, Gurgul Magdalena, Zaraska Leszek, Lisowski Wojciech
Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
Faculty of Materials Science and Engineering, Warsaw University of Technology Wołoska 141 02-507 Warsaw Poland.
RSC Adv. 2021 Dec 2;11(61):38727-38738. doi: 10.1039/d1ra07443a. eCollection 2021 Nov 29.
The structural and chemical modification of TiO nanotubes (NTs) by the deposition of a well-controlled Au deposit was investigated using a combination of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), Raman measurements, UV-Vis spectroscopy and photoelectrochemical investigations. The fabrication of the materials focused on two important factors: the deposition of Au nanoparticles (NPs) in UHV (ultra high vacuum) conditions (1-2 × 10 mbar) on TiO nanotubes (NTs) having a diameter of ∼110 nm, and modifying the electronic interaction between the TiO NTs and Au nanoparticles (NPs) with an average diameter of about 5 nm through the synergistic effects of SMSI (Strong Metal Support Interaction) and LSPR (Local Surface Plasmon Resonance). Due to the formation of unique places in the form of "hot spots", the proposed nanostructures proved to be photoactive in the UV-Vis range, where a characteristic gold plasmonic peak was observed at a wavelength of 580 nm. The photocurrent density of Au deposited TiO NTs annealed at 650 °C was found to be much greater (14.7 μA cm) than the corresponding value (∼0.2 μA cm) for nanotubes in the as-received state. The IPCE (incident photon current efficiency) spectral evidence also indicates an enhancement of the photoconversion of TiO NTs due to Au NP deposition without any significant change in the band gap energy of the titanium dioxide ( ∼3.0 eV). This suggests that a plasmon-induced resonant energy transfer (PRET) was the dominant effect responsible for the photoactivity of the obtained materials.
通过结合X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、扫描透射电子显微镜(STEM)、拉曼测量、紫外可见光谱和光电化学研究,研究了通过可控金沉积对TiO纳米管(NTs)进行的结构和化学改性。材料的制备聚焦于两个重要因素:在超高真空(UHV,1 - 2×10 mbar)条件下,将金纳米颗粒(NPs)沉积在直径约为110 nm的TiO纳米管(NTs)上,并通过强金属载体相互作用(SMSI)和局域表面等离子体共振(LSPR)的协同效应,改变TiO纳米管与平均直径约为5 nm的金纳米颗粒(NPs)之间的电子相互作用。由于以“热点”形式形成了独特的位置,所提出的纳米结构在紫外 - 可见范围内被证明具有光活性,在580 nm波长处观察到特征性的金等离子体峰。发现650℃退火的金沉积TiO纳米管的光电流密度(14.7 μA/cm²)比未处理状态下纳米管的相应值(约0.2 μA/cm²)大得多。入射光子电流效率(IPCE)光谱证据还表明,由于金纳米颗粒的沉积,TiO纳米管的光转换增强,而二氧化钛的带隙能量(约3.0 eV)没有任何显著变化。这表明等离子体诱导的共振能量转移(PRET)是所获得材料光活性的主要作用机制。