Suppr超能文献

潜在变量混合建模与个体治疗预测。

Latent variable mixture modelling and individual treatment prediction.

机构信息

Research Department of Clinical, Educational and Health Psychology, University College London, Gower Street, London, WC1E 7HB, UK.

Research Department of Clinical, Educational and Health Psychology, University College London, Gower Street, London, WC1E 7HB, UK.

出版信息

Behav Res Ther. 2020 Jan;124:103505. doi: 10.1016/j.brat.2019.103505. Epub 2019 Oct 28.

Abstract

Understanding which groups of patients are more or less likely to benefit from specific treatments has important implications for healthcare. Many personalised medicine approaches in mental health employ variable-centred approaches to predicting treatment response, yet person-centred approaches that identify clinical profiles of patients can provide information on the likelihood of a range of important outcomes. In this paper, we discuss the use of latent variable mixture modelling and demonstrate its use in the application of a patient profiling algorithm using routinely collected patient data to predict outcomes from psychological treatments. This validation study analysed data from two services, which included n = 44,905 patients entering treatment. There were different patterns of reliable recovery, improvement and clinical deterioration from therapy, across the eight profiles which were consistent over time. Outcomes varied between different types of therapy within the profiles: there were significantly higher odds of reliable recovery with High Intensity therapies in two profiles (32.5% of patients) and of reliable improvement in three profiles (32.2% of patients) compared with Low Intensity treatments. In three profiles (37.4% of patients) reliable recovery was significantly more likely if patients had CBT vs Counselling. The developments and potential application of latent variable mixture approaches are further discussed.

摘要

了解哪些患者群体更有可能从特定治疗中获益,这对医疗保健具有重要意义。许多心理健康领域的个性化医学方法采用以变量为中心的方法来预测治疗反应,但确定患者临床特征的以患者为中心的方法可以提供关于一系列重要结果可能性的信息。在本文中,我们讨论了使用潜在变量混合建模的方法,并展示了如何在使用常规收集的患者数据预测心理治疗结果的患者特征分析算法的应用中使用这种方法。这项验证研究分析了来自两个服务的数据,其中包括 n=44905 名接受治疗的患者。在八个一致的时间内的特征中,存在不同模式的治疗中可靠的恢复、改善和临床恶化。在特征内的不同类型的治疗之间,结果有所不同:在两个特征(32.5%的患者)中,高强度治疗的可靠恢复几率和三个特征(32.2%的患者)中的可靠改善几率明显更高,而与低强度治疗相比。在三个特征(37.4%的患者)中,如果患者接受 CBT 治疗而不是咨询治疗,可靠恢复的可能性显著增加。进一步讨论了潜在变量混合方法的发展和潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1a2/7417810/045e7c96b403/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验