Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich 80638, Germany; email:
Annu Rev Clin Psychol. 2018 May 7;14:91-118. doi: 10.1146/annurev-clinpsy-032816-045037. Epub 2018 Jan 29.
Machine learning approaches for clinical psychology and psychiatry explicitly focus on learning statistical functions from multidimensional data sets to make generalizable predictions about individuals. The goal of this review is to provide an accessible understanding of why this approach is important for future practice given its potential to augment decisions associated with the diagnosis, prognosis, and treatment of people suffering from mental illness using clinical and biological data. To this end, the limitations of current statistical paradigms in mental health research are critiqued, and an introduction is provided to critical machine learning methods used in clinical studies. A selective literature review is then presented aiming to reinforce the usefulness of machine learning methods and provide evidence of their potential. In the context of promising initial results, the current limitations of machine learning approaches are addressed, and considerations for future clinical translation are outlined.
机器学习方法在临床心理学和精神病学中的应用,明确侧重于从多维数据集学习统计函数,以便对个体进行可推广的预测。本综述的目的是提供一个通俗易懂的理解,为什么这种方法对于未来的实践很重要,因为它有可能利用临床和生物学数据来增强与精神疾病患者的诊断、预后和治疗相关的决策。为此,本文批评了当前心理健康研究中统计范式的局限性,并介绍了临床研究中使用的关键机器学习方法。然后进行了选择性文献综述,旨在强调机器学习方法的有用性,并提供其潜力的证据。在有希望的初步结果的背景下,本文讨论了机器学习方法的当前局限性,并概述了未来临床转化的考虑因素。