Suppr超能文献

Rat lung recovery from 3 days of continuous exposure to 0.75 ppm ozone.

作者信息

Bassett D J, Bowen-Kelly E, Elbon C L, Reichenbaugh S S

机构信息

Department of Environmental Health Sciences, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205.

出版信息

J Toxicol Environ Health. 1988;25(3):329-47. doi: 10.1080/15287398809531213.

Abstract

The present study investigated the inflammatory responses and enzyme levels in lungs isolated from male Wistar rats after 3 d of continuous exposure to 0.75 ppm ozone and following 4 d of recovery in air. These times are associated with maximal proliferation of the alveolar type II epithelium and their subsequent transformation to new type I cells. Immediately following ozone exposure, bronchoalveolar lavage demonstrated neutrophil accumulation that was no longer present 4 d later. The number of lavaged macrophages was also found to be increased immediately following ozone exposure, and remained elevated at 4 d postexposure. Whole-lung determinations of key enzymes involved in energy generation (succinate oxidase) and maintenance of lung NADPH and reduced glutathione were corrected for changes in cell number, by use of lung DNA measurements. Immediately following ozone exposure succinate oxidase (SOX), glucose-6-phosphate (G6PD), and 6-phosphogluconate (6PGD) dehydrogenase activities per milligram DNA were significantly enhanced by 76%, 48%, and 21%, respectively. These data suggested that ozone-exposed lungs had cells with increased mitochondria and NADPH-generating capability consistent with the increased metabolic needs of a proliferating epithelium. At 4 d postexposure, only G6PD activity per milligram DNA remained higher by 22% than air-exposed controls. Although both glutathione reductase (GSSG-R) and peroxidase (GSH-Px) activities per lung were elevated in lungs immediately following exposure and 4 d later, when corrected for DNA only GSH-Px activity was significantly increased by 29% in lungs after the postexposure period. Lungs 4 d postexposure therefore had cells relatively enriched in G6PD and GSH-Px that might account for the increased ozone tolerance that has previously been associated with the formation of new type I epithelium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验