EuroMov, University of Montpellier, Montpellier, France.
EuroMov, University of Montpellier, Montpellier, France; Open Mind Innovation, Caen, France.
Neurosci Biobehav Rev. 2020 May;112:553-584. doi: 10.1016/j.neubiorev.2019.12.024. Epub 2019 Dec 14.
Humans' ability to synchronize movement with auditory rhythms relies on motor networks, such as cortical areas, basal ganglia and the cerebellum, which also participate in rhythm perception and movement production. Current research has provided insights into the dependence of this action-perception coupling upon the entrainment of neuronal activity by external rhythms. At a physical level, advances on wearable robotics have enriched our understanding of the dynamical properties of the locomotor system showing evidence of mechanical entrainment. Here we defend the view that modelling brain and locomotor oscillatory activities as dynamical systems, at both neural and physical levels, provides a unified theoretical framework for the understanding of externally driven rhythmic entrainment of biological systems. To better understand the underlying mechanisms of this multi-level entrainment during locomotion, we review in a common framework the core questions related to the dynamic properties of biological oscillators and the neural bases of auditory-motor synchronization. Illustrations of our approach, using personalized auditory stimulation, to gait rehabilitation in Parkinson disease and to manipulation of runners' kinematics are presented.
人类与听觉节奏同步运动的能力依赖于运动网络,如皮质区域、基底神经节和小脑,这些区域也参与节奏感知和运动产生。当前的研究提供了关于这种动作感知耦合对神经元活动由外部节奏进行的同步的依赖的见解。在物理层面上,可穿戴机器人的进步丰富了我们对运动系统动力学特性的理解,表明存在机械同步的证据。在这里,我们主张将大脑和运动振荡活动建模为神经和物理层面的动力系统,为理解生物系统的外部驱动节奏同步提供了一个统一的理论框架。为了更好地理解运动过程中这种多层次同步的潜在机制,我们在一个共同的框架内回顾了与生物振荡器的动态特性和听觉-运动同步的神经基础相关的核心问题。我们还介绍了使用个性化听觉刺激进行帕金森病步态康复和对跑步者运动学进行操作的方法。